Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Retinal degeneration in mammals causes permanent loss of vision, due to an inability to regenerate naturally. Some non-mammalian vertebrates show robust regeneration, via Muller glia (MG). We have recently made significant progress in stimulating adult mouse MG to regenerate functional neurons by transgenic expression of the proneural transcription factor Ascl1. While these results showed that MG can serve as an endogenous source of neuronal replacement, the efficacy of this process is limited. With the goal of improving this in mammals, we designed a small molecule screen using sci-Plex, a method to multiplex up to thousands of single-nucleus RNA-seq conditions into a single experiment. We used this technology to screen a library of 92 compounds, identified, and validated two that promote neurogenesis in vivo. Our results demonstrate that high-throughput single-cell molecular profiling can substantially improve the discovery process for molecules and pathways that can stimulate neural regeneration and further demonstrate the potential for this approach to restore vision in patients with retinal disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637464PMC
http://dx.doi.org/10.7554/eLife.92091DOI Listing

Publication Analysis

Top Keywords

muller glia
8
multiplexed single-cell
4
single-cell sequencing
4
sequencing screen
4
screen identifies
4
identifies compounds
4
compounds increase
4
increase neurogenic
4
neurogenic reprogramming
4
reprogramming murine
4

Similar Publications

Strategies to stimulate the regeneration of neurons in the adult central nervous system can offer universal solutions for neurodegenerative diseases. Taking lessons from naturally regenerating species, such as the zebrafish, we have previously shown that vector-mediated expression of proneural transcription factors can stimulate neurogenesis from the resident Müller glia (MG) population in the adult mouse retina, both and . To bring this closer to translation, we now show that vector-mediated expression of the proneural transcription factor ASCL1 can reprogram adult macaque MG into functional neurons.

View Article and Find Full Text PDF

The dual nature of neuroinflammation in networked brain.

Front Immunol

September 2025

Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany.

Neuroinflammation is a dynamic, context-sensitive process that plays essential roles in brain development, maintenance, and response to injury. It reflects a finely balanced neuroimmune state-facilitating repair and adaptation under homeostatic conditions, while also contributing to dysfunction when dysregulated or chronically activated. In this mini-review, we examine the cellular and molecular mechanisms underlying neuroinflammatory responses, focusing on the roles of microglia and astrocytes, their bidirectional communication with neurons, and their interaction with peripheral immune signals.

View Article and Find Full Text PDF

The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood-retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD).

View Article and Find Full Text PDF

During development, neural progenitor cells modify their output over time to produce different types of neurons and glia in chronological sequences. Epigenetic processes have been shown to regulate neural progenitor potential, but the underlying mechanisms are not well understood. Here, we generated retina-specific conditional knockouts (cKOs) in the key nucleosome remodeller Chd4.

View Article and Find Full Text PDF

Autophagy Regulates Müller Glial Cell Inflammatory Activation.

Invest Ophthalmol Vis Sci

August 2025

Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States.

Purpose: We tested whether Müller cells utilize autophagy to support immune privilege in the eye.

Methods: The essential autophagy gene Atg5 was deleted in retinal Müller cells. Inflammation was induced by intravitreal injection of lipopolysaccharide (LPS) that was monitored by hematoxylin and eosin (H&E) staining, immunofluorescent confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF