Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Starting in early infancy, our perception and predictions are rooted in strong expectations about the behavior of everyday objects. These intuitive physics expectations have been demonstrated in numerous behavioral experiments, showing that even pre-verbal infants are surprised when something impossible happens (e.g., when objects magically appear or disappear). However, it remains unclear whether and how physical expectations shape different aspects of moment-by-moment online visual scene processing, unrelated to explicit physical reasoning. In two EEG experiments, people watched short videos like those used in behavioral studies with adults and infants, and more recently in AI benchmarks. Objects moved on a stage, and were briefly hidden behind an occluder, with the scene either unfolding as expected, or violating object permanence (adding or removing an object). We measured the contralateral delay activity, an electrophysiological marker of online processing, to examine participants' working memory (WM) representations, as well as their ability to continuously track the objects in the scene. We found that both types of object permanence violations disrupted tracking, even though violations involved perceptually non-salient events (magical vanishing) or new objects that weren't previously tracked (magical creation). Physical violations caused WM to reset, i.e., to discard the original scene representation before it could recover and represent the updated number of items. Providing a physical explanation for the violations (a hole behind the occluder) restored object tracking, and we found evidence that WM continued to represent items that disappeared 'down the hole'. Our results show how intuitive physical expectations shape online representations, and form the basis of dynamic object tracking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634321 | PMC |
http://dx.doi.org/10.1162/opmi_a_00174 | DOI Listing |