Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Strong anharmonic coupling between vibrational states in polycyclic aromatic hydrocarbons (PAH) produces highly mixed vibrational transitions that challenge the current understanding of the nature of the astronomical mid-infrared PAH emission bands. Traditionally, PAH emission bands have been characterized as either aromatic or aliphatic, and this assignment is used to determine the fraction of aliphatic carbon in astronomical sources. In reality, each of the transitions previously utilized for such an attribution is highly mixed with contributions from both aliphatic and aromatic CH motions as well as non-CH motions such as CC stretches. High-resolution gas-phase IR absorption measurements of the spectra of the aromatic molecules indene and 2-ethynyltoluene at the Canadian Light Source combined with high-level anharmonic quantum chemical computations reveal the complex nature of these transitions, implying that the use of these features as a marker for the aliphatic fraction in astronomical sources is not uniquely true or actually predictive. Further, the presence of aliphatic, aromatic, and ethynyl CH groups in 2-ethynyltoluene provides an internally consistent opportunity to simultaneously study the spectroscopy of all three astronomically important groups. Finally, this study makes an explicit connection between fundamental quantum mechanical principles and macroscopic astronomical chemical physics, an important link necessary to untangle the lifecycle of stellar and planetary systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630826PMC
http://dx.doi.org/10.1093/mnras/stae2588DOI Listing

Publication Analysis

Top Keywords

pah emission
12
aliphatic aromatic
12
aromatic ethynyl
8
highly mixed
8
emission bands
8
astronomical sources
8
aliphatic
7
aromatic
7
astronomical
5
battle motions
4

Similar Publications

Emissions and carbon isotopic signatures of polycyclic aromatic compounds (PAHs, OPAHs) produced by coking in China.

Environ Pollut

September 2025

College of Environment and Ecology, Laboratory of Compound Air Pollution Identification and Control, Taiyuan University of Technology, Taiyuan, 030024, China.

The coking industry is a major source of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs). Although some OPAHs are considered to be more toxic than PAHs, limited information is available on the levels of PAH and OPAH emissions from the coking industry. Accordingly, we measured the emission factors (EF) for PAHs and OPAHs produced by the coking industry in China.

View Article and Find Full Text PDF

Electricity is an essential and critical component for contemporary life. An energy crisis is emerging worldwide because electricity demand and consumption exceeds production capacity. Lebanon a country that has suffered from consecutive wars in addition to a crippling financial crisis lacks the capacity to provide 24-h electricity supply.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbon (PAH) derivatives, specifically azaarenes and nitrated and oxygenated PAHs, are emerging contaminants of concern due to their increased toxicity and persistence compared to the parent PAHs. Despite their toxicity, their simultaneous analysis in complex matrices, such as in fumes emitted from bituminous mixtures, remains challenging due to limitations of conventional analytical techniques. To address this, an advanced methodology was developed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS Orbitrap Eclipse) equipped with an APCI source for the simultaneous identification and quantification of 14 PAH derivatives.

View Article and Find Full Text PDF

Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbon (PAH) molecules have been extensively investigated, and they showcase excellent optoelectronic properties, which are promising for optical applications, including deep-penetration bioimaging and NIR lasers. However, constructing PAHs with deep-NIR (800-1700 nm) photoluminescence is a long-standing challenge, owing to the limitation of the energy gap law. Herein, three N-atom-doped PAHs APAH-a-c with electronic acceptor-donor-acceptor (A-D-A) configuration were produced a facile sandwich-like -fusion pathway.

View Article and Find Full Text PDF