A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Physiological and biochemical mechanisms of drought regulating the size and color of heartwood in Dalbergia odorifera. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drought has been found to affect the size and color of precious heartwood of Dalbergia odorifera, but the mechanism remains unclear. For this purpose, we performed the measurement of heartwood size, color and flavonoid content and composition in a 15-year-old mixed plantation of D. odorifera and Santalum album that had been subjected to two levels of rainfall exclusion and control treatments for 7 years, and carbon isotope labeling and anatomical observation in 2-year-old potted D. odorifera seedlings exposed to two levels of drought and control treatments. The field experiment showed that drought had significant effects on heartwood size and color of D. odorifera. More starch was depleted in the transition zone (TZ) in drought than in control. Drought significantly decreased the values of color parameters and increased the contents of total flavonoids, glycitein, fisetin, chrysin and claussequinone, and total flavonoids, glycitein, fisetin, chrysin and claussequinone were significantly negatively correlated with L* and b*. The pot experiment showed that during longitudinal transport of nonstructural carbohydrate (NSC), the dilution factor of 13C abundance in the inner bark sap in severe drought (SD) was twice as much as that in control. The inner bark thickness and transverse area of sieve tubes in SD were significantly lower than those in control. Our findings further confirm that drought promotes the heartwood formation of D. odorifera, and discuss interspecific variations in the response of heartwood formation to drought. Drought enhances the exchange transport of NSC between phloem and xylem by reducing the transverse area of sieve tubes, thus causing more NSC to be transported into xylem, and drought also promotes the depletion of starch in the TZ to produce more heartwood. Drought darkens the heartwood color by increasing the contents of total flavonoids, glycitein, fisetin, chrysin and claussequinone in heartwood. To our knowledge, this is the first study addressing the physiological and biochemical mechanism of drought regulating heartwood formation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpae157DOI Listing

Publication Analysis

Top Keywords

size color
16
drought
13
drought control
12
total flavonoids
12
flavonoids glycitein
12
glycitein fisetin
12
fisetin chrysin
12
chrysin claussequinone
12
heartwood formation
12
heartwood
10

Similar Publications