A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Restoration of physiologic loading after engineered disc implantation mitigates immobilization-induced facet joint and paraspinal muscle degeneration. | LitMetric

Restoration of physiologic loading after engineered disc implantation mitigates immobilization-induced facet joint and paraspinal muscle degeneration.

Acta Biomater

Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA. Electronic address: Harvey.S

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intervertebral disc degeneration is commonly associated with back and neck pain, and standard surgical treatments do not restore spine function. Replacement of the degenerative disc with a living, tissue-engineered construct has the potential to restore normal structure and function to the spine. Toward this goal, our group developed endplate-modified disc-like angle-ply structures (eDAPS) that recapitulate the native structure and function of the disc. While our initial large animal studies utilized rigid internal fixation of the eDAPS implanted level to ensure retention of the eDAPS, chronic immobilization does not restore full function and is detrimental to the spinal motion segment. The purpose of this study was to utilize a goat cervical disc replacement model coupled with finite element modeling of goat cervical motion segments to investigate the effects of remobilization (removal of fixation) on the eDAPS, the facet joints and the adjacent paraspinal muscle. Our results demonstrated that chronic immobilization caused notable degeneration of the facet joints and paraspinal muscles adjacent to eDAPS implants. Remobilization improved eDAPS composition and integration and mitigated, but did not fully reverse, facet joint osteoarthritis and paraspinal muscle atrophy and fibrosis. Finite element modeling revealed that these changes were likely due to reduced range of motion and reduced facet loading, highlighting the importance of maintaining normal spine biomechanical function with any tissue engineered disc replacement. STATEMENT OF SIGNIFICANCE: Back and neck pain are ubiquitous in modern society, and the gold standard surgical treatment of spinal fusion limits patient function. This study advances our understanding of the response of the spinal motion segment to tissue engineered disc replacement with provisional fixation in a large animal model, further advancing the clinical translation of this technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735281PMC
http://dx.doi.org/10.1016/j.actbio.2024.12.014DOI Listing

Publication Analysis

Top Keywords

engineered disc
12
paraspinal muscle
12
disc replacement
12
facet joint
8
neck pain
8
standard surgical
8
structure function
8
large animal
8
fixation edaps
8
chronic immobilization
8

Similar Publications