A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

VX-765 attenuates secondary damage and β-amyloid accumulation in ipsilateral thalamus after experimental stroke in rats. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Focal cortical infarction can result both in the accumulation of Aβ in as well as further secondary damage and inflammation within the ipsilateral thalamus. VX-765 is a potent and selective small-molecule capable of inhibiting caspase-1, which has been shown to exhibit active neuroprotection properties in multiple disease. However, the neuroprotection efficacy of VX-765 as a means of attenuating secondary damage after MCAO remains uncertain. As such, we sought to determine the ability of VX-765 to alter thalamic Aβ accumulation, secondary damage, and sensory deficits in rats of focal cortical infarction. A rat model of distal branch of middle cerebral artery occlusion (dMCAO) was used to evaluate the effects of the VX-765 on the secondary damage and β-amyloid accumulation in ipsilateral thalamus after dMCAO in rats. The activation of astrocyte and microglia, loss of neuron, and damage to sensory function were detected weekly till 4 weeks after modeling. VX-765 was injected intraperitoneally delayed after 7 days injury and the status of secondary damage, inflammation and β-amyloid accumulation in ipsilateral thalamus after dMCAO were examined.Our results revealed that VX-765 markedly reduce sensory deficits in these rats, suppressing secondary damage through reductions in APP and accumulations of Aβ with an accompanying reduction in both neuronal loss, astrocyte and microglia activation. VX-765 markedly inhibited NLRP3 and caspase-1, and downregulation of ASC, GSDMD, IL-1β, and IL-18 in the ipsilateral thalamus after MCAO. Our results further suggested that VX-765 may regulate secondary damage via control inflammation and suppressing the production of pro-inflammatory factors such as iNOS, TNF-α, IL-6 and COX2 that are produced downstream NF-κB signaling. Taken together, VX-765 is well-suited to attenuate secondary damage and accumulations of Aβ, improving recovery from sensory deficits and cognitive deficits after MCAO, at least in part via suppressing pyroptosis and inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2024.115097DOI Listing

Publication Analysis

Top Keywords

secondary damage
36
ipsilateral thalamus
20
β-amyloid accumulation
12
accumulation ipsilateral
12
sensory deficits
12
vx-765
10
damage
10
secondary
9
damage β-amyloid
8
rats focal
8

Similar Publications