Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Emphysema, marked by irreversible lung tissue destruction, poses challenges in progression prediction due to its heterogeneity. Early detection is particularly critical for patients with Alpha-1 Antitrypsin Deficiency (AATD), a genetic disorder reducing ATT protein levels. Heterozygous carriers (PiMS and PiMZ) have variable AAT levels thus complicating their prognosis. This study introduces a novel prognostic model, the Lobe-based Transformer encoder (LobTe), designed to predict the annual change in lung density (ΔALD [g/L-yr]) using CT scans. Utilizing a global self-attention mechanism, LobTe specifically analyzes lobar tissue destruction to forecast disease progression. In parallel, we developed and compared a second model utilizing an LSTM architecture that implements a local subject-specific attention mechanism. Our methodology was validated on a cohort of 2,019 participants from the COPDGene study. The LobTe model demonstrated a small root mean squared error (RMSE=1.73 g/L-yr) and a notable correlation coefficient (ρ=0.61), explaining over 35% of the variability in ΔALD (R= 0.36). Notably, it achieved a higher correlation coefficient of 0.68 for PiMZ heterozygous carriers, indicating its effectiveness in detecting early emphysema progression among smokers with mild to moderate AAT deficiency. The presented models could serve as a tool for monitoring disease progression and informing treatment strategies in carriers and subjects with AATD. Our code is available at github.com/acil-bwh/LobTe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188325 | PMC |
http://dx.doi.org/10.1016/j.compbiomed.2024.109500 | DOI Listing |