A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Long-Range Surface Forces in Salt-in-Ionic Liquids. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ionic liquids (ILs) are a promising class of electrolytes with a unique combination of properties, such as extremely low vapor pressures and nonflammability. Doping ILs with alkali metal salts creates an electrolyte that is of interest for battery technology. These salt-in-ionic liquids (SiILs) are a class of superconcentrated, strongly correlated, and asymmetric electrolytes. Notably, the transference numbers of the alkali metal cations have been found to be negative. Here, we investigate Na-based SiILs with a surface force apparatus, X-ray scattering, and atomic force microscopy. We find evidence of confinement-induced structural changes, giving rise to long-range interactions. Force curves also reveal an electrolyte structure consistent with our predictions from theory and simulations. The long-range steric interactions in SiILs reflect the high aspect ratio of compressible aggregates at the interfaces rather than the purely electrostatic origin predicted by the classical electrolyte theory. This conclusion is supported by the reported anomalous negative transference numbers, which can be explained within the same aggregation framework. The interfacial nanostructure should impact the formation of the solid electrolyte interphase in SiILs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656838PMC
http://dx.doi.org/10.1021/acsnano.4c09355DOI Listing

Publication Analysis

Top Keywords

salt-in-ionic liquids
8
alkali metal
8
transference numbers
8
long-range surface
4
surface forces
4
forces salt-in-ionic
4
liquids ionic
4
ionic liquids
4
liquids ils
4
ils promising
4

Similar Publications