A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Electrically induced insulator-to-metal transition in InP-based ion-gated transistor. | LitMetric

Electrically induced insulator-to-metal transition in InP-based ion-gated transistor.

Sci Rep

International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Miyagi, 980-8572, Japan.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the growing awareness of energy savings and consumption for a sustainable ecosystem, the concept of iontronics, that is, controlling electronic devices with ions, has become critically important. Composite devices made of ions and solid materials have been investigated for diverse applications, ranging from energy storage to power generation, memory, biomimetics, and neuromorphic devices. In these studies, three terminal transistor configurations with liquid electrolytes have often been utilized because of their simple device structures and relatively easy fabrication processes. To date, oxide semiconductors and layered materials have mainly been used as active materials. However, inorganic compound semiconductors, which have a long history of basic and applied research, hardly function as channel materials in ion-gated transistors, partly because of the Schottky barrier at the electrode interface. Herein, we show that a typical group III-V compound semiconductor, InP, is available as a high-performance channel for ion-gated transistors with an on/off current ratio of ≈ 10 and a subthreshold swing as small as 93 mV/dec at room temperature. We fabricated AuGe/Ni contact electrodes via annealing to obtain the Ohmic contacts over a wide temperature range. The electrical resistance of InP was drastically decreased by the ionic liquid gating, which led to an electrically induced insulator-to-metal transition. Bulk compound semiconductors are well characterized and have relatively high carrier mobilities; thus, devices combined with electrolytes should prompt the development of iontronics research for novel device functionalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621117PMC
http://dx.doi.org/10.1038/s41598-024-81685-4DOI Listing

Publication Analysis

Top Keywords

electrically induced
8
induced insulator-to-metal
8
insulator-to-metal transition
8
devices ions
8
compound semiconductors
8
ion-gated transistors
8
transition inp-based
4
inp-based ion-gated
4
ion-gated transistor
4
transistor growing
4

Similar Publications