Dimensional versus categorical approach: A comparative study of mathematical cognition.

Trends Neurosci Educ

Psychophysiology Laboratory, Department of Humanities and Social Sciences, Indian Institute of Technology Bombay, Mumbai 400076, India.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Researchers have employed two distinct methods to understand the cognitive underpinnings of mathematical ability: categorical and dimensional. These two methods have different underlying assumptions. However, to the best of our knowledge, research to date has not empirically tested which method can better predict variance in mathematical ability.

Method: 104 children from Indian public schools in the 3rd and 4th grades completed a mathematical ability test. For the categorical approach, participants were categorized into two groups: mathematical learning difficulty and high math achieving. For the dimensional approach, the data of all participants were considered. The cognitive abilities measured included approximate number system, working memory, inhibitory control, and spatial ability.

Results: Mixed factorial ANOVA and hierarchical regressions revealed that the dimensional approach demonstrated better predictive power for mathematical ability than the categorical approach.

Conclusions: The dimensional approach offers a more comprehensive insight into mathematical cognition, enabling greater control over the predictors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tine.2024.100245DOI Listing

Publication Analysis

Top Keywords

mathematical ability
12
dimensional approach
12
categorical approach
8
mathematical cognition
8
ability categorical
8
mathematical
7
dimensional
5
approach
5
dimensional versus
4
categorical
4

Similar Publications

A Monte Carlo Method for Estimating Secondary Photon Yields from Beta-emitting Radionuclides Concentrated in Environmental Soil.

Health Phys

September 2025

Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.

External exposure due to secondary photons (predominantly bremsstrahlung) generated from electron source emissions in environmental soil are of concern due to their ability to deposit significant amounts of ionizing energy to organs and tissues within the body. The "condensed history method" employed in many modern Monte Carlo (MC) codes may be used to simulate secondary photon yields (given as photons per beta decay) arising from electron source emissions with relatively few assumptions regarding the secondary photon spatial, energy, and angular dependencies. These yields may in turn be used to derive protection quantities such as secondary photon effective dose rate (DR) and risk coefficients for a variety of idealized external exposure scenarios.

View Article and Find Full Text PDF

Coordination polymers (CPs) are versatile materials formed by metal ions and organic ligands, offering a broad range of structural and functional possibilities. Phosphonates and phosphinates are particularly attractive ligands for CPs due to their multiple binding sites, varied coordination geometries, and ability to form robust network structures. Phosphonates, considered harder ligands, form strong bonds with hard metals such as Fe, while phosphinates offer additional versatility due to the varied pendant groups on phosphorus.

View Article and Find Full Text PDF

Assessment of industrial fault diagnosis using rough approximations of fuzzy hypersoft sets.

PLoS One

September 2025

Department of Maths and Computer Science, Faculty of Science, University of Kinshasa, Kinshasa, The Democratic Republic of the Congo.

Reliable and timely fault diagnosis is critical for the safe and efficient operation of industrial systems. However, conventional diagnostic methods often struggle to handle uncertainties, vague data, and interdependent multi-criteria parameters, which can lead to incomplete or inaccurate results. Existing techniques are limited in their ability to manage hierarchical decision structures and overlapping information under real-world conditions.

View Article and Find Full Text PDF

Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.

Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.

View Article and Find Full Text PDF

There are many benefits for students who participate in undergraduate research experiences, including increased retention and persistence in science, technology, engineering, and mathematics (STEM). By doing research, minoritized students increase their likelihood of pursuing graduate school and STEM careers. The benefits of research experiences are partially mediated by students' interactions with their faculty research mentor.

View Article and Find Full Text PDF