The impact of atmospheric ultrafine particulate matter on IgE-mediated type 1 hypersensitivity reaction.

J Hazard Mater

Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea. Electronic address:

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effect of atmospheric ultrafine particulate matter (UPM) on respiratory allergic diseases has been investigated for decades; however, the precise molecular mechanisms underlying these effects remain poorly understood. In this study, we used a simulated UPM (sUPM) generated via the spark discharge method to refine black carbon, a core particle that closely mimics real-world UPM, including the size (i.e., size of agglomerates: 165 nm) and organic carbon/elemental carbon ratio (i.e., 2.62). When 25 μg/mouse of dispersed sUPM was instilled into the lungs of mice, it promoted the infiltration and degranulation response of pulmonary mast cells, and exposure to sUPM in an immunoglobulin E (IgE)-mediated passive anaphylaxis model intensified the degranulation response of peripheral mast cells. These effects of sUPM were demonstrated to amplify the downstream signaling mechanism of the high-affinity IgE receptor (FcεRI) mediated by IgE when tested using rat basophil leukemia (RBL)-2H3 and mouse bone marrow-derived mast cells (BMMCs) collected from the bone marrow of BALB/c mice. These results indicate that airborne UPM can exacerbate type 1 hypersensitivity reactions by enhancing the IgE-mediated signaling pathways within mast cells. Furthermore, this study provided mechanistic evidence on exacerbated allergic pulmonary diseases induced by UPM inhalation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136705DOI Listing

Publication Analysis

Top Keywords

mast cells
16
atmospheric ultrafine
8
ultrafine particulate
8
particulate matter
8
type hypersensitivity
8
degranulation response
8
upm
5
impact atmospheric
4
matter ige-mediated
4
ige-mediated type
4

Similar Publications

Pediatric acute myeloid leukemia (pAML) is a heterogeneous malignancy driven by diverse cytogenetic mutations. While identification of cytogenetic lesions improved risk stratification, prognostication remains inadequate with 30% of standard-risk patients experiencing relapse within 5 years. To deeply characterize pAML heterogeneity and identify poor outcome-associated blast cell profiles, we performed an analysis on 708,285 cells from 164 bone marrow biopsies of 95 patients and 11 healthy controls.

View Article and Find Full Text PDF

Blood transcriptomic analysis reveals a distinct molecular subtype of treatment resistant depression compared to non-treatment resistant depression.

Brain Behav Immun

September 2025

Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona 08003, Spain.

Treatment-resistant depression (TRD) is a severe condition characterized by chronic and recurrent depressive symptoms, leading to significant morbidity and a considerable socio-economic impact. Genetic and biological studies suggest that TRD is associated with distinct biological characteristics. In this study, we analysed whole-transcriptome differences in 293 patients with major depressive disorder (MDD) to compare TRD (N = 150) vs non-TRD (N = 143) cases.

View Article and Find Full Text PDF

Background: The proteome is a valuable resource for pinpointing therapeutic targets. Therefore, we conducted a proteome-wide Mendelian randomization (MR) study aimed at identifying potential protein markers and therapeutic targets for Anti-N-Methyl-D-Aspartate Receptor Encephalitis (NMDAR-E).

Methods: Protein quantitative trait loci (pQTLs) were obtained from seven published genome-wide association studies (GWASs) focusing on the plasma proteome, resulting in summary-level data for 734 circulating protein markers.

View Article and Find Full Text PDF

Characterization of the heterogeneity in oxidative stress and transcriptional programs within the in vivo microenvironment of ulcerative colitis.

Mol Immunol

September 2025

Department of Gastroenterology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, First Affiliated Hospital of Lishui University, Lishui, Zhejiang 323000, China. Electronic address:

Objective: Oxidative stress exerts an essential role in the pathogenesis of ulcerative colitis (UC). This study aims to unveil the heterogeneity in oxidative stress among immune cell subpopulations in UC.

Methods: Human colon epithelial cells were exposed to 100 ng/mL LPS to stimulate UC, which were administrated with antioxidants 500 mM butylated hydroxyanisole or 20 μM N-acetylcysteine.

View Article and Find Full Text PDF

NSG-SGM3 humanized mouse models are well-suited for studying human immune physiology but are technically challenging and expensive. We previously characterized a simplified NSG-SGM3 mouse, engrafted with human donor CD34 hematopoietic stem cells without receiving prior bone marrow ablation or human secondary lymphoid tissue implantation, that still retains human mast cell- and basophil-dependent passive anaphylaxis responses. Its capacities for human antibody production and human B cell maturation, however, remain unknown.

View Article and Find Full Text PDF