98%
921
2 minutes
20
Cyclohexane (Cy), commonly produced by the catalytic hydrogenation of benzene (Bz), is used in large quantities as a solvent or feedstock for nylon polymers. Removing trace unreacted Bz from the Cy product is technically difficult due to their similar molecular structures and physical properties. Herein, we report that a metal-organic framework (MOF) adsorbent shows a molecular sieving effect for Bz and Cy with record-high Bz/Cy adsorption selectivities (216, 723, and 1027) in their liquid mixtures (v/v = 1:1, 1:10, and 1:20), and traps Bz molecules effectively even at low partial pressure in the vapor phase (e.g., 2.49 mmol/g at 8.2 Pa) or at low content in liquid-phase Cy (e.g., 128 mg/g at 20 ppm). Over 99% removal of trace Bz (1000 ppm) from liquid Cy could be achieved in one simple stripping step at room temperature using this sorbent, producing a Cy with >99.999% purity. Single-crystal structure analyses for guest-free and Bz-loaded phases of the MOF disclosed that a narrow slit-like pore aperture and the strong uniting of multiple weak host-guest and guest-guest interactions are the co-origin of its distinct adsorption property for Bz and Cy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c13208 | DOI Listing |
Beilstein J Nanotechnol
September 2025
Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Vietnam.
Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. Electronic address:
Advanced oxidation processes (AOPs) are among the most effective methods for industrial wastewater treatment, but their applications to remove trace organic contaminants (TrOCs) are hampered by a lack of "selectivity". Here, an AOP was established using Cr(III) to activate periodate (PI) (Cr(III)/PI system) realizing rapid TrOCs removal, in which 2 μM tetracycline hydrochloride was completely degraded within 8 min (with 29 μM Cr(III) and 30 μM PI, pH 8). Mechanism analysis revealed the positive effect of Cr(III) complexation on enhancing both the efficiency and selectivity of TrOCs removal.
View Article and Find Full Text PDFLangmuir
September 2025
State Grid Hubei Electric Power Xiaogan Power Supply Co., Xiaogan 430075, China.
Corrosive sulfur compounds and trace moisture were key factors causing the rapid deterioration of finished mineral oils. In power systems, insulating oil contaminated by such substances not only threatens the stable operation of power equipment but also transforms into hazardous waste due to performance degradation. This study innovatively developed a sulfur-modified TiO-loaded SiO nanocomposite (S-nTDSGS) adsorbent, which was comprehensively characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and specific surface area analysis.
View Article and Find Full Text PDFWater Res
August 2025
Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.
Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.
View Article and Find Full Text PDFVet Anaesth Analg
May 2025
Vetstream Ltd, Cambridge, UK.
Objective: To present the essence of the presentation 'CEPEF - what we knew then and what we know now' given at the autumn meeting of the Association of Veterinary Anaesthetists in 2024, celebrating its 60th anniversary.
Databases Used: (this is not a formal systematic review). PubMed, Scopus, Google Scholar and the 4th Confidential Enquiry into Equine Perioperative Fatalities (CEPEF4).