A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Substitution, Elimination, and Integration of Methyl Groups in Terpenes Initiated by C-H Bond Functionalization. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Methyl groups are ubiquitous in natural products and biologically active compounds, but methods for their selective transformation in such structures are limited. For example, terpenoids contain many methyl groups, due to their biosynthetic pathways, but few reactions of these groups in such structures have been reported. We demonstrate that the combination of methyl C-H silylation and oxidation proximal to native hydroxyl or carbonyl groups occurs in a range of terpenoids and show that the installed hydroxyl group serves as a toehold to enable substitution, elimination, or integration of the methyl carbon into the terpenoid skeleton by the cleavage of C-C bonds. In one case, substitution of the entire methyl group occurs by further oxidation and decarboxylative coupling. In a second, substitution of the methyl group with hydrogen occurs by photochemical hydrodecarboxylation or epimerization by retro-Claisen condensation. In a third, photocatalytic decarboxyolefination formally eliminates methane from the starting structure to generate a terminal olefin for further transformations. Finally, a Dowd-Beckwith-type rearrangement cleaves a nearby C-C bond and integrates the methyl group into a ring, forming derivatives with unusual and difficult-to-access expanded rings. This strategy to transform a methyl group into a synthon marks a distinct approach to restructuring the skeletons of complex architectures and adding functional groups relevant to medicinal chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613304PMC
http://dx.doi.org/10.1021/acscentsci.4c01108DOI Listing

Publication Analysis

Top Keywords

methyl group
16
methyl groups
12
methyl
9
substitution elimination
8
elimination integration
8
integration methyl
8
groups
6
group
5
substitution
4
groups terpenes
4

Similar Publications