98%
921
2 minutes
20
Background: The 12-lead electrocardiogram (ECG) is an established modality for cardiovascular assessment. While deep learning algorithms have shown promising results for analyzing ECG data, the limited availability of labeled datasets hinders broader applications. Self-supervised learning can learn meaningful representations from the unlabeled data and transfer the knowledge to downstream tasks. This study underscores the development and validation of a self-supervised learning methodology tailored to produce universal ECG representations from longitudinally collected ECG data, applicable across a spectrum of cardiovascular assessments.
Methods: We introduced a pre-trained model that utilizes contrastive self-supervised learning to universal ECG representations from 4,932,573 ECG tracing from 1,684,298 adult patients on 7 campuses of Chang Gung Memorial Hospital. We extensively evaluated the proposed model using an internal dataset collected from diverse healthcare establishments and an external public dataset encompassing varied cardiovascular conditions and sample magnitudes.
Results: The pre-trained model showed the equivalent performance to the conventionally trained models, which solely rely on supervised learning in both internal and external datasets, to assess atrial fibrillation, atrial flutter, premature rhythm abnormalities, first-degree atrioventricular block, and myocardial infarction. When applied to small sample sizes, it was observed that the learned ECG representations enhanced the classification models, resulting in an improvement of up to 0.3 of the area under the receiver operating characteristic (AUROC).
Conclusions: The ECG representations learned from longitudinal ECG data are highly effective, particularly with small sample sizes, and further enhance the learning process and boost robustness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmedinf.2024.105742 | DOI Listing |
Cell Syst
September 2025
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:
Spatial transcriptomics allows for the measurement of gene expression within the native tissue context. However, despite technological advancements, computational methods to link cell states with their microenvironment and compare these relationships across samples and conditions remain limited. To address this, we introduce Tissue Motif-Based Spatial Inference across Conditions (TissueMosaic), a self-supervised convolutional neural network designed to discover and represent tissue architectural motifs from multi-sample spatial transcriptomic datasets.
View Article and Find Full Text PDFIEEE Trans Cybern
September 2025
Sleep is essential for maintaining human health and quality of life. Analyzing physiological signals during sleep is critical in assessing sleep quality and diagnosing sleep disorders. However, manual diagnoses by clinicians are time-intensive and subjective.
View Article and Find Full Text PDFNeural Netw
September 2025
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China. Electronic address:
Automatic segmentation of retinal vessels from retinography images is crucial for timely clinical diagnosis. However, the high cost and specialized expertise required for annotating medical images often result in limited labeled datasets, which constrains the full potential of deep learning methods. Recent advances in self-supervised pretraining using unlabeled data have shown significant benefits for downstream tasks.
View Article and Find Full Text PDFComput Biol Med
September 2025
Department of Electrical and Computer Engineering and the Institute of Biomedical Engineering, University of New Brunswick, Fredericton, E3B 5A3, NB, Canada.
Pattern recognition-based myoelectric control is traditionally trained with static or ramp contractions, but this fails to capture the dynamic nature of real-world movements. This study investigated the benefits of training classifiers with continuous dynamic data, encompassing transitions between various movement classes. We employed both conventional (LDA) and deep learning (LSTM) classifiers, comparing their performance when trained with ramp data, continuous dynamic data, and an LSTM pre-trained with a self-supervised learning technique (VICReg).
View Article and Find Full Text PDFBioinform Adv
August 2025
IBM Research, Yorktown Heights, NY, 10598, United States.
Motivation: Due to the intricate etiology of neurological disorders, finding interpretable associations between multiomics features can be challenging using standard approaches.
Results: We propose COMICAL, a contrastive learning approach using multiomics data to generate associations between genetic markers and brain imaging-derived phenotypes. COMICAL jointly learns omics representations utilizing transformer-based encoders with custom tokenizers.