A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Defect-Engineered Metal-Organic Frameworks as Bioinspired Heterogeneous Catalysts for Amide Bond Formation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The synthesis of amides from amines and carboxylic acids is the most widely carried out reaction in medicinal chemistry. Yet, most amide couplings are still conducted using stoichiometric reagents, leading to significant waste; few synthetic catalysts for this transformation have been adopted industrially due to their limited scope and/or poor recyclability. The majority of catalytic approaches focus on a single activation mode, such as enhancing the electrophilicity of the carboxylic acid partner using a Lewis acid. In contrast, nature effortlessly forges and breaks amide bonds using precise arrays of Lewis/Brønsted acidic and basic functional groups. Drawing inspiration from these systems, herein we report a simple defect engineering strategy to colocalize Lewis acidic Zr sites with other catalytically active species within porous metal-organic frameworks (MOFs). Specifically, the combination of pyridine -oxide and Zr open metal sites within the defective framework produces a heterogeneous catalyst that facilitates amide bond formation with broad functional group compatibility from amines and carboxylic acids, esters, or primary amides. Extensive density functional theory (DFT) calculations using cluster models support that the formation of a hydrogen-bonding network at the defect sites facilitates amide bond formation in this material. can be recycled at least five times without losing significant crystallinity, porosity, or catalytic activity and can be employed in continuous flow. This defect engineering strategy can be potentially generalized to produce libraries of catalytically active MOFs with different combinations of colocalized functional groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039647PMC
http://dx.doi.org/10.1021/jacs.4c13196DOI Listing

Publication Analysis

Top Keywords

amide bond
12
bond formation
12
metal-organic frameworks
8
amines carboxylic
8
carboxylic acids
8
functional groups
8
defect engineering
8
engineering strategy
8
catalytically active
8
facilitates amide
8

Similar Publications