Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Chemokines are small proteins involved in recruiting leukocytes to sites of inflammation via interactions with specific cell surface receptors. CCL22 is a chemokine known to play a critical role in inflammatory diseases such as atopic dermatitis and asthma; inhibition of this chemokine therefore represents an attractive therapeutic strategy. Herein, we describe the discovery of cyclic d-sulfopeptide inhibitors of CCL22 identified through mirror-image mRNA display with genetic reprogramming. Chemical synthesis of mirror-image d-CCL22 enabled screening of a cyclic peptide library comprised of all l-amino acids, with reprogramming of l-sulfotyrosine to mimic the presence of this post-translational modification on native chemokine receptors. Enriched macrocyclic peptides were prepared in their mirror-image d-form and assessed for binding against native l-CCL22. The most potent ligand, a plasma-stable d-cyclic peptide bearing four d-sulfotyrosine residues, exhibited nanomolar affinity for CCL22, high selectivity over other chemokines, and nanomolar inhibition of CCL22 signaling through CCR4. This work highlights the vast potential of mirror-image mRNA display technology for discovering proteolytically stable d-peptide inhibitors of protein-protein interactions relevant across a range of therapeutic indications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c12057 | DOI Listing |