Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Prisons are high-risk settings for the transmission of communicable disease. Robust surveillance systems are required to identify and control outbreaks. Wastewater surveillance for SARS-CoV-2 was introduced in four prisons in Wales in March 2022. We investigated its contribution to the COVID-19 surveillance programme.

Methods: We evaluated prison wastewater surveillance against eight system attributes using a mixed-methods approach. Semi-structured interviews were completed with key stakeholders to assess usefulness, flexibility and acceptability. Quantitative analyses were completed to assess data quality, sensitivity, positive-predictive value, representativeness and timeliness. To assess sensitivity of the system to detect changes in incidence we carried out a time-series analysis comparing levels of virus in wastewater with trends in confirmed COVID-19 cases from clinical surveillance.

Results: Interviews with stakeholders indicated that wastewater surveillance is a useful adjunct to existing case-based surveillance. However, it had limited influence on action taken within the prison, often lagging behind existing surveillance and not specific enough to target interventions. The novelty of wastewater surveillance meant stakeholders lacked confidence in interpreting the data. Despite these limitations, wastewater surveillance detected changes in SARS-CoV-2 activity in Welsh prison populations which corroborated trends in case surveillance.

Conclusion: Prison wastewater surveillance, implemented in Wales for a period during the COVID-19 pandemic, was useful and should be considered as part of a wider surveillance programme in response to future SARS-CoV-2 waves, or in response to future pandemics. It is particularly beneficial in the absence of comprehensive clinical testing. We identified several limitations to address should this surveillance be re-started.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611585PMC
http://dx.doi.org/10.3389/fpubh.2024.1462186DOI Listing

Publication Analysis

Top Keywords

wastewater surveillance
28
surveillance
13
surveillance sars-cov-2
8
mixed-methods approach
8
prison wastewater
8
response future
8
wastewater
7
prison
5
evaluation wastewater
4
sars-cov-2
4

Similar Publications

Objectives: Although wastewater monitoring for virus detection has increased in communities worldwide, public awareness, understanding, questions, and concerns about wastewater monitoring are largely unknown. We assessed awareness, knowledge, and support for wastewater monitoring for detection of viruses and bacteria among US residents and elicited questions and concerns from residents about its use.

Methods: We conducted a survey among a racially and ethnically diverse sample of residents in Colorado, Maryland, Missouri, Nebraska, and Texas to assess awareness, knowledge, and support of wastewater monitoring.

View Article and Find Full Text PDF

Site-specific assessment of illicit drug consumption patterns in South Korea via wastewater-based epidemiology.

Water Res

August 2025

Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea. Electronic address:

Wastewater-based epidemiology (WBE) is increasingly used as a complementary tool for monitoring drug use at the population level, providing anonymized, real-time estimates of community drug consumption. Site-specific applications of WBE can identify localized patterns that national or municipal surveys may overlook. This study presents the first comprehensive, site-specific assessment of illicit drug use in South Korea using WBE.

View Article and Find Full Text PDF

Wastewater surveillance of SARS-CoV-2 and influenza in a dynamic university community: understanding how wastewater measurements correspond to reported cases.

Sci Total Environ

September 2025

Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16801, USA. Electronic address:

Wastewater surveillance is increasingly an effective public health tool for responding to epidemics and preparing for annual cycles of respiratory illnesses. We measured genetic markers from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), influenza A virus (IAV) and influenza B virus (IBV) in untreated wastewater of a university campus and its local residential community over a four-year period using digital Polymerase Chain Reaction (PCR) methods. These data were then analyzed and compared to clinical case data reported to the state by zip code.

View Article and Find Full Text PDF

Whole-genome sequence of 19 , isolated from municipal wastewater in State College, Pennsylvania.

Microbiol Resour Announc

September 2025

Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA.

Eight wastewater samples were collected from three sites in State College, Pennsylvania, during June and July 2024. Nineteen were isolated and sequenced. Three isolates were ≤9 SNPs different from human cases deposited in GenBank, highlighting the potential for wastewater-based surveillance to monitor outbreaks.

View Article and Find Full Text PDF

Following the experience gained during the COVID-19 pandemic, the Belgian Risk Assessment Group (RAG) developed the Respi-Radar in the summer of 2023 to assess the epidemiological situation of respiratory infections and inform public health preparedness and response in Belgium. The Respi-Radar consists of four risk levels (green, yellow, orange and red), which indicate the extent of viral circulation and/or pressure on the healthcare system. Based on these risk levels, authorities can apply adequate measures depending on the epidemiological trends.

View Article and Find Full Text PDF