Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The power industry is the main source of carbon dioxide (CO) emissions in Jiangsu Province and also an important source of sulfur dioxide (SO), nitrogen oxides (NO), and particulate matter (PM). In order to address climate change and contribute to the goal of "carbon peaking and carbon neutrality," Jiangsu Province has implemented a series of low-carbon development policies in the power industry. These policies not only reduce carbon emissions but also have important synergistic emission reduction benefits for atmospheric pollutants. Based on the low-carbon development plan for electricity in Jiangsu Province, a baseline scenario (BAU) and four low-carbon development scenarios have been constructed: current policy scenario (CLE), IEA target scenario (IEA), accelerated coal-fired power phaseout scenario 1 (STE1), and scenario 2 (STE2). An econometric model was used to predict the future electricity demand in Jiangsu Province, and the greenhouse gas-air pollution interactions and synergies (GAINS) model was employed to quantitatively analyze the impact of low-carbon policies in the power sector on the emissions of CO, SO, NO, and PM, which are the major air pollutants in the region. The results showed that the electricity demand in Jiangsu Province has been increasing year by year, with an annual growth rate of approximately 4.01%. Under the BAU scenario, carbon emissions were projected to peak around 2030, with a peak carbon emission level of 462.03 Mt. Under the IEA scenario, it should reach its peak around 2028, with a peak emission level of 380.27 Mt. Under the CLE scenario, the peak would be expected to occur around 2026 at 353.46 Mt. In both STE1 and STE2 scenarios, carbon emissions had reached their peak and were continuously declining after 2020. In all scenarios, the replacement of conventional coal-fired power plants with natural gas (GAS), nuclear power (NUC), solar photovoltaic (SPV), and wind power (WND) showed high synergistic benefits in pollution reduction and carbon reduction. The deployment of biomass energy (OS1) and non-renewable waste energy (OS2) will result in a significant increase in SO emissions. Carbon capture and storage (CCS) transformation of coal-fired power only showed significant synergistic benefits after 2035. The development of OS1 and OS2 fuel substitutes in power plants should focus more on reducing SO emissions, while upgrading and retrofitting CCS technology should prioritize the reduction of particulate matter emissions. The research findings provide a reference and decision-making basis for the synergistic efficiency of pollution reduction and carbon reduction in the power industry in Jiangsu Province.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202311231 | DOI Listing |