98%
921
2 minutes
20
Human papillomavirus (HPV), which is transmitted through sexual activity, is the primary cause of cervical cancer and the fourth most common type of cancer in women. In this study, an immunoinformatics approach was employed to predict immunodominant epitopes from a diverse array of antigens with the ultimate objective of designing a potent multiepitope vaccine against multiple HPV types. Immunodominant B cell, cytotoxic T cell (CTL), and helper T cell (HTL) epitopes were predicted using bioinformatics tools These epitopes were subsequently analyzed using various immunoinformatics tools, and those that exhibited high antigenicity, immunogenicity, non-allergenicity, non-toxicity, and excellent conservation were selected. The selected epitopes were linked with appropriate linkers and adjuvants to formulate a broad-spectrum multiepitope vaccine candidate against HPV. The stability of the multiepitope vaccine candidate was confirmed through structural analysis, and docking results indicated a high affinity for Toll-like receptors (TLR2 and TLR4). Molecular dynamics simulations demonstrated a persistent interaction of TLR2 and TLR4 with the multiepitope vaccine candidate. In silico immunological simulations showed that three injections of the multiepitope vaccine candidate resulted in high levels of B- and T-cell immune responses. Moreover, the in silico cloning results indicated that the multiepitope vaccine candidate could be expressed in substantial amounts in E. coli. The results of this study imply that designing a broad-spectrum vaccine against various HPV types using computational methods is plausible; however, experimental validation and safety testing to confirm the findings is essential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611089 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311351 | PLOS |
Mol Genet Genomics
September 2025
Department of Biochemistry, Bahauddin Zakariya University, Multan, Multan, 66000, Punjab, Pakistan.
Moraxella catarrhalis is a Gram-negative diplococcus bacterium and a common respiratory pathogen, implicated in 15-20% of otitis media (OM) cases in children and chronic obstructive pulmonary disease (COPD) in adults. The rise of drug-resistant Moraxella catarrhalis has highlighted the urgent need for the potent vaccine strategies to reduce its clinical burden. Despite a mortality rate of 13%, there is no FDA-approved vaccine for this pathogen.
View Article and Find Full Text PDFComput Biol Med
September 2025
Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India. Electronic address:
Antimicrobial resistance endangers global health by rapidly disseminating Multidrug-resistant (MDR) pathogens that undermine antibiotic therapies. P.aeruginosa, a high-priority ESKAPE pathogen, exemplifies the crisis with complex resistance mechanisms that demand alternative strategies beyond conventional antibiotics.
View Article and Find Full Text PDFJ Membr Biol
September 2025
Protein Biology Lab, Department of Zoology, University of Delhi, Delhi, India.
Chlamydia trachomatis is an obligate intracellular Gram-negative pathogen that causes sexually transmitted infections (STIs) and trachoma. Current interventions are limited due to the widespread nature of asymptomatic infections, and the absence of a licensed vaccine exacerbates the challenge. In this study, we predicted outer membrane β-barrel (OMBB) proteins and designed a multi-epitope vaccine (MEV) construct using identified proteins.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Lab of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Background: Multi-epitope vaccines have become the preferred strategy for protection against infectious diseases by integrating multiple MHC-restricted T-cell and B-cell epitopes that elicit both humoral and cellular immune responses against pathogens. Computational methods address various aspects independently, yet their orchestration is technically challenging, as most bioinformatics tools are accessible through heterogeneous interfaces and lack interoperability features. The present work proposes a novel framework for rationalized multi-epitope vaccine design that streamlines end-to-end analyses through an integrated web-based environment.
View Article and Find Full Text PDF