Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Microalgae are promising sources of intracellular metabolites such as proteins, polysaccharides, pigments, and lipids. Thus, this study applied high-pressure homogenization (HPH) techniques on a pilot scale to disrupt the cells of Tetradesmus obliquus. The effects of pressure (P; 150, 250, and 350 bar), suspension concentration (Cs; 1.0, 1.5, and 2.0 % w/v), and number of cycles (Nc; 5, 15, and 25) were evaluated in HPH via a Box-Behnken experimental design. Response surface methodology was applied to optimize the recovery rate (dTr) of pigments and lipids. The specific energy consumption (SEC) and color change gradient (ΔE) of the biomass during HPH were also assessed. The optimal HPH conditions for pigment extraction with 1.5 % Cs (w/v) were as follows: P = 312 bar and Nc = 22 for chlorophyll-a (0.83 g/100 g; dTr = 69 %; SEC = 47.50 kJ/g dry matter); P = 345 bar and Nc = 24 for chlorophyll-b (0.63 g/100 g; dTr = 80 %; SEC = 57.30 kJ/g dry matter); P = 345 bar and Nc = 24 for total carotenoids (0.53 g/100 g; dTr = 79 %; SEC = 54.12 kJ/g dry matter); and P = 350 bar and Nc = 25 for β-carotene (299 µg/g; dTr = 58 %; SEC = 62.08 kJ/g dry matter). The optimal HPH conditions for lipid extraction were P = 350 bar and Nc = 23, with a lipid recovery rate of ≥28 %. Cell disruption during HPH caused a change in the color of the biomass (ΔE) due to the release of intracellular biocompounds. Increasing P and Nc led to higher SECs, ΔE gradients, and pigment and lipid contents. Thus, the levels of recovered pigments and lipids can be indicators of cell disruption in T. obliquus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.115113 | DOI Listing |