98%
921
2 minutes
20
Rethinking and restructuring cross-disciplinary research requires innovative models and the Institute for Cross-Disciplinary Physics and Complex Systems (IFISC) stands as a powerful example. Since its creation, IFISC has grown fourfold, now hosting 90 researchers from 15 different countries. Its unique structure fosters collaborations and a shared sense of belonging, built on a common foundation in complex systems. By bridging diverse disciplines and providing cutting-edge training, IFISC is shaping the next generation of researchers while offering a blueprint for how to reorganize research resources to foster cross-disciplinary research at institution levels and beyond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607454 | PMC |
http://dx.doi.org/10.1038/s41467-024-54703-2 | DOI Listing |
JMIR Cancer
September 2025
iCARE Secure Data Environment & Digital Collaboration Space, NIHR Imperial Biomedical Research Centre, London, United Kingdom.
Background: Electronic health records (EHRs) are a cornerstone of modern health care delivery, but their current configuration often fragments information across systems, impeding timely and effective clinical decision-making. In gynecological oncology, where care involves complex, multidisciplinary coordination, these limitations can significantly impact the quality and efficiency of patient management. Few studies have examined how EHR systems support clinical decision-making from the perspective of end users.
View Article and Find Full Text PDFCrit Care Sci
September 2025
Universitätsklinikum Carl Gustav Carus - Dresden, Sachsen, Germany.
The PROtective VEntilation (PROVE) Network is a globally-recognized collaborative research group dedicated to advancing research, education, and collaboration in the field of mechanical ventilation. Established to address critical questions in intraoperative and intensive care ventilation, the network focuses on improving outcomes for patients undergoing mechanical ventilation in diverse settings, including operating rooms, intensive care units, burn units, and resource-limited environments in low- and middle-income countries. The PROVE Network is committed to generating high-quality evidence through a comprehensive portfolio of investigations, including randomized clinical trials, observational research, and meta-analyses.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA.
Models of how things spread often assume that transmission mechanisms are fixed over time. However, social contagions-the spread of ideas, beliefs, innovations-can lose or gain in momentum as they spread: ideas can get reinforced, beliefs strengthened, products refined. We study the impacts of such self-reinforcement mechanisms in cascade dynamics.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Augsburg, Experimental Physics VI, Center for Electronic Correlations and Magnetism, 86159 Augsburg, Germany.
Magnon-phonon hybridization in ordered materials is a crucial phenomenon with significant implications for spintronics, magnonics, and quantum materials research. We present direct experimental evidence and theoretical insights into magnon-phonon coupling in Mn_{3}Ge, a kagome antiferromagnet with noncollinear spin order. Using inelastic x-ray scattering and ab initio modeling, we uncover strong hybridization between planar spin fluctuations and transverse optical phonons, resulting in a large hybridization gap of ∼2 meV.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
McMaster University, Department of Physics and Astronomy, Hamilton, Ontario L8S 4M1, Canada.
Magnetic heat capacity measurements of a high-quality single crystal of the dipole-octupole pyrochlore Ce_{2}Hf_{2}O_{7} down to a temperature of T=0.02 K are reported. These show a two-peaked structure, with a Schottky-like peak at T_{1}∼0.
View Article and Find Full Text PDF