A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Predicting early mortality in hemodialysis patients: a deep learning approach using a nationwide prospective cohort in South Korea. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early mortality after hemodialysis (HD) initiation significantly impacts the longevity of HD patients. This study aimed to quantify the effect sizes of risk factors on mortality using various machine learning approaches. A cohort of 3284 HD patients from the CRC-ESRD (2008-2014) was analyzed. Mortality risk models were validated using logistic regression, ridge regression, lasso regression, and decision trees, as well as ensemble methods like bagging and random forest. To better handle missing data and time-series variables, a recurrent neural network (RNN) with an autoencoder was also developed. Additionally, survival models predicting hazard ratios were employed using survival analysis techniques. The analysis included 1750 prevalent and 1534 incident HD patients (mean age 58.4 ± 13.6 years, 59.3% male). Over a median follow-up of 66.2 months, the overall mortality rate was 19.3%. Random forest models achieved an AUC of 0.8321 for first-year mortality prediction, which was further improved by the RNN with autoencoder (AUC 0.8357). The survival bagging model had the highest hazard ratio predictability (C-index 0.7756). A shorter dialysis duration (< 14.9 months) and high modified Charlson comorbidity index scores (7-9) were associated with hazard ratios up to 7.76 (C-index 0.7693). Comorbidities were more influential than age in predicting early mortality. Monitoring dialysis adequacy (KT/V), RAAS inhibitor use, and urine output is crucial for assessing early prognosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604665PMC
http://dx.doi.org/10.1038/s41598-024-80900-6DOI Listing

Publication Analysis

Top Keywords

early mortality
8
mortality hemodialysis
8
random forest
8
rnn autoencoder
8
mortality
6
predicting early
4
patients
4
hemodialysis patients
4
patients deep
4
deep learning
4

Similar Publications