98%
921
2 minutes
20
Background: Chronic cerebral hypoperfusion (CCH) is a key contributor to vascular cognitive impairment (VCI) and is typically associated with blood-brain barrier (BBB) damage. This study investigates the pathological mechanisms underlying CCH-induced neurovascular unit (NVU) alterations.
Methods: A mouse model of CCH was established using the bilateral common carotid artery stenosis (BCAS) procedure. Decreased cerebral blood flow (CBF) and impaired BBB integrity were assessed. Brain microvessel (BMV)-specific transcriptome profiles were analyzed using RNA-seq, supplemented with published single-cell RNA-seq data.
Results: RNA-seq revealed neuroinflammation-related gene activation and significant downregulation of Notch signaling pathway genes in BMVs post-BCAS. Upregulated differentially expressed genes (DEGs) were enriched in microglia/macrophages, while downregulated DEGs were prominent in endothelial cells and pericytes. Enhanced activation of vascular-associated microglia (VAM) was linked to neurovascular alterations.
Conclusion: CCH induces significant NVU changes, marked by microglia-associated neuroinflammation and Notch signaling downregulation. These insights highlight potential therapeutic targets for treating neuroinflammatory and vascular-related neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603426 | PMC |
http://dx.doi.org/10.1002/iid3.70082 | DOI Listing |
Biomed Pharmacother
September 2025
Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Laboratory of Pharmacogenomics, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic. Electronic address:
Patients with epithelial ovarian cancer (EOC) face high mortality due to late diagnosis, recurrence, metastasis, and drug resistance. The NOTCH signaling pathway plays a critical role in cancer progression. This study analyzed NOTCH pathway deregulation in EOC patients and its response to taxane treatment in vitro and in vivo.
View Article and Find Full Text PDFMediators Inflamm
September 2025
College of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan 250002, China.
Uveitis is an inflammatory eye disease, and Longdan Xiegan Decoction (LXD) has been used to treat uveitis. However, the underlying mechanisms have not fully been addressed. The present study aimed to provide new insights into LXD ameliorating inflammatory response of experimental autoimmune uveitis (EAU) and regulating T helper (Th) cell differentiation via the interaction between microRNA (miRNA) and mRNA.
View Article and Find Full Text PDFMol Med Rep
November 2025
Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
Asprosin is glucogenic adipokine that exerts a wide repertoire of actions, including the regulation of appetite, insulin resistance and cell proliferation. At present, little is known about the actions of asprosin in the human placenta. The present study investigated the effects of asprosin on the transcriptome of the BeWo and JEG‑3 placental cell lines, and assessed the expression of FBN1/Furin and asprosin's candidate receptors in healthy placentas when compared against placentas from pregnancies where the carrier had gestational diabetes mellitus (GDM).
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
Cadmium chloride (CdCl₂) is a powerful environmental toxin that has been documented to induce severe hepatic and renal damage through oxidative stress mechanisms. This study evaluated the protective impact of combined low dose of gamma irradiation (LDR) and trans-resveratrol (Trans-Res) on CdCl₂-induced hepato-renal toxicity in rats. Five groups of 50 male albino rats had been classified as; control, CdCl₂ (2 mg/kg), CdCl₂+LDR (0.
View Article and Find Full Text PDFStem Cell Res Ther
September 2025
Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China.
Background: The united airway diseases (UADs), exemplified by allergic rhinitis and asthma, cause significant morbidity. Although conventional pharmacotherapy provides symptomatic relief, recent evidence has indicated that cellular therapy, such as stem cell-derived exosomes, might offer therapeutic advantages throughout the entire respiratory tract.
Objectives: The present study intends to demonstrate the effect and explore the mechanism of a novel pharmaco-exosomal immunotherapy, i.