High Humidity Alters Myeloid-Derived Suppressor Cells in Spleen Tissue: Insights into Rheumatoid Arthritis Progression.

J Inflamm Res

Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint inflammation and bone destruction, leading to severe complications. Previous research has suggested that high humidity conditions may exacerbate RA, however, the underlying mechanisms remain unclear. Furthermore, there is a lack of evidence linking humidity to the worsening of RA symptoms in animal models.

Methods: The Collagen-induced arthritis (CIA) mouse model was established using C57BL/6 mice. The arthritis status of the mice was evaluated under two distinct humidity conditions (50% and 80%). The aim of the present study was to investigate the impact of elevated humidity levels on the types of splenic cells present using mass spectrometry flow. Additionally, the study utilized MDSCs, which are significantly upregulated by high humidity, to assess the levels of oxidative stress and conducted mRNA sequencing of sorted MDSCs to investigate their impact on arthritis in CIA mice.

Results: Compared to normal humidity, high humidity exacerbated arthritis incidence in mice, resulting in increased arthritis scores, swelling, serum autoantibodies (anti-COII and anti-CCP), and upregulation of pro-inflammatory cytokines. Significant variations were observed in the spleen index under high humidity condition, accompanied by noticeable inflammatory alterations. Moreover, elevated humidity levels induced a substantial modulation in MDSCs population in the spleen of CIA mice, along with alterations in oxidative stress markers such as heightened serum ROS levels, and increased expression of COX, SOD, and Nrf2 mRNA. Following successful sorting of MDSCs, mRNA sequencing revealed a decrease in the expression of Rap1 signaling pathway under high humidity environment, which may contribute to the increase of MDSCs cells and aggravate the progression of RA disease.

Conclusion: A comprehensive analysis of the available data reveals a detrimental impact of high humidity on MDSCs numbers within spleen tissue, with potential implications for the development of RA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602200PMC
http://dx.doi.org/10.2147/JIR.S490860DOI Listing

Publication Analysis

Top Keywords

high humidity
28
humidity
11
spleen tissue
8
rheumatoid arthritis
8
humidity conditions
8
arthritis cia
8
investigate impact
8
elevated humidity
8
humidity levels
8
oxidative stress
8

Similar Publications

The role of Denisovan paleohabitats in shaping modern human genetic resistance to viral, bacterial, and parasitic infections.

J Hum Evol

September 2025

Sustainability Solutions Research Lab, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary. Electronic address:

Denisovans contributed notably to the genomes of present-day East and Southeast Asians. However, the relationship between the inhabited paleohabitats and the adaptive genetic traits related to infections in modern humans remains underexplored. This study uses geospatial techniques to analyze climatic factors associated with three Denisovan archaeological sites linked to nine specimens.

View Article and Find Full Text PDF

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF

Salmonella enterica in thinly sliced carrots and zucchini survives better at higher temperatures and higher relative humidity conditions.

Food Res Int

November 2025

Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Brazil. Electronic address:

The global increase in demand for ready-to-eat foods has been accompanied by a concerning rise in salmonellosis outbreaks linked to minimally processed vegetables (MPV). This study evaluated S. enterica survival in minimally processed carrot and zucchini under different combined conditions of temperature (6, 9 and 12 °C) and relative humidity (RH; 75, 85 and 95 %) over 168 h.

View Article and Find Full Text PDF

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF

Design and Fabrication of Flexible Silk Fibroin/Lanthanide Ion Membranes with Multifunctional Properties of Fluorescence, Humidity Sensitivity, and Conductivity.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing

Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.

View Article and Find Full Text PDF