Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Using a diverse array of thermally robust phosphine enediyne ligands (dxpeb, X = Ph, Ph-OCH, Ph-CF, Ph- CH, Ph- CF, Pr, Cy, and Bu) a novel suite of cisplatin-like Pt(ii) metalloenediynes (3, Pt(dxpeb)Cl) has been synthesized and represents unique electronic perturbations on thermal Bergman cyclization kinetics. Complexes 3e (Ph- CF) and 3f (Pr) are the first of this structure type to be crystallographically characterized with inter alkyne termini distances (3e: 3.13 Å; 3f: 3.10 Å) at the lower end of the widely accepted critical distance range within which enediynes should demonstrate spontaneous ambient temperature cyclization. Despite different electronic profiles, these metalloenediynes adopt a rigid, uniform structure suggesting complexes of the form Pt(dxpeb)Cl have orthogonalized geometric and electronic contributions to thermal Bergman cyclization. Kinetic activation parameters determined using P NMR spectroscopy highlight the dramatic reactivity and thermal tunability of these complexes. At room temperature, the half-life ( ) of cyclization spans a range of ∼35 hours and for the aryl phosphine derivatives, cycloaromatization rates are 10-30 times faster for complexes with electron donating substituents (3b: Ph-OCH; 3d: Ph- CH) compared to those with electron withdrawing substituents (3c: Ph-CF; 3e: Ph- CF). Computational interrogation of the aryl phosphine metalloenediynes 3a-3e reveals that the origin of this precise electronic control derives from electronic withdrawing group-mediated alkyne carbon polarization that amplifies coulombic repulsion increasing the cyclization barrier height. Additionally, mixing between the in-plane π-orbitals and the phosphine aryl ring system is pronounced for complexes with electron donating substituents which stabilizes the developing C-C bond and lowers the activation barrier. This π-orbital mixing is negligible however, for complexes with electron withdrawing substituents due to an energetic mismatch of the orbital systems. Overall, this work demonstrates that for geometrically rigid frameworks, even remote enediyne functionalization can have pronounced effects on activation barrier.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591729PMC
http://dx.doi.org/10.1039/d4sc05396fDOI Listing

Publication Analysis

Top Keywords

complexes electron
12
ph-cf ph-
8
thermal bergman
8
bergman cyclization
8
aryl phosphine
8
electron donating
8
donating substituents
8
electron withdrawing
8
withdrawing substituents
8
activation barrier
8

Similar Publications

Unravelling the molecular network structure of biohybrid hydrogels.

Mater Today Bio

October 2025

Leibniz Institute of Polymer Research Dresden, Division Polymer Biomaterials Science, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany.

Glycosaminoglycan-based biohybrid hydrogels represent a powerful class of cell-instructive materials with proven potential in tissue engineering and regenerative medicine. Their biomedical functionality relies on a nanoscale polymer network that standard microscopy techniques cannot resolve. Here, we introduce an advanced analytical approach that integrates transmission electron microscopy, X-ray scattering, and computer simulations to directly and quantitatively characterize the nanoscale molecular network structure of these hydrogels.

View Article and Find Full Text PDF

Approach to Evaluating Reorganization Energies of Interfacial Electrochemical Reactions.

ACS Electrochem

September 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Reaction rate coefficients for electron-transfer processes at the electrode-electrolyte interface are commonly estimated by using the Butler-Volmer equation, but their values are inaccurate beyond a few tenths of volts of overpotential. The Marcus-Hush-Chidsey (MHC) formalism yields correct asymptotic behavior of the rate coefficients vs applied overpotential but has complex dependencies on the redox system's intrinsic parameters, which can be difficult to model or measure. In this work, we bridge the two kinetics formalisms to estimate the reorganization energy, one of the important parameters for the MHC formalism, and investigate its dependence on other intrinsic parameters such as activation barriers, electronic coupling strength, and the density of states of the electrode surface.

View Article and Find Full Text PDF

Protonation Enables Durable and Efficient Water Oxidation on Commercial TiO/IrO.

J Phys Chem Lett

September 2025

Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China.

The oxygen evolution reaction (OER) performance of commercial TiO-supported IrO (IrO/TiO) suffers from the high electron transfer barriers at the IrO/TiO interface. Herein, we develop a cathodic polarization strategy to protonate TiO (p-TiO) in a commercial IrO/TiO catalyst. The high-density Ti-OH polaronic states on the surface of protonated TiO greatly contribute to the decrease in the electron transfer barriers at the IrO/TiO interface.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

Structural biology is fundamental to understanding the molecular basis of biological processes. While machine learning-based protein structure prediction has advanced considerably, experimentally determined structures remain indispensable for guiding structure-function analyses and for improving predictive modeling. However, experimental studies of protein complexes continue to pose challenges, particularly due to the necessity of high protein concentrations and purity for downstream analyses such as cryogenic electron microscopy.

View Article and Find Full Text PDF