Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alphaviruses are emerging public health threats. Broadly reactive anti-alphavirus monoclonal antibodies (mAbs) have been shown to be protective in mouse models of infection. However, the mechanism of Fc-dependent or Fc-independent heterologous protection remains ill-defined . Here, we used two vaccine-elicited, broadly reactive, anti-alphavirus mAbs, SKT05 and SKT20, to establish correlates of mAb-mediated protection during Venezuelan equine encephalitis virus (VEEV) challenge. SKT20 required Fc effector functions to prevent lethality. In contrast, SKT05-mediated survival was independent of Fc effector functions, which is likely linked to early viral control through potent egress inhibition. However, control of virus replication and spread with SKT05 was Fc-dependent; these findings extended to additional models with alternative VEEV subtypes and chikungunya virus. During therapeutic delivery of SKT05, Fc effector functions were only required at 3 days post-infection. The necessity of Fc effector functions for SKT20 was related to mAb binding avidity rather than epitope and could be overcome by increasing the dose of SKT20 relative to the functional avidity of SKT05. Collectively, this study identified antibody avidity as a correlate for efficacy and associated Fc-dependent mechanisms that can be leveraged for therapeutic development of monoclonal antibodies against alphaviruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601667PMC
http://dx.doi.org/10.1101/2024.11.03.619087DOI Listing

Publication Analysis

Top Keywords

effector functions
16
broadly reactive
12
reactive anti-alphavirus
12
antibodies alphaviruses
8
monoclonal antibodies
8
requirement effector
4
effector function
4
function overcome
4
overcome binding
4
binding potency
4

Similar Publications

CD4 T follicular helper (T) cells support tailored B cell responses against multiple classes of pathogens. To reveal how diverse T phenotypes are established, we profiled mouse T cells in response to viral, helminth and bacterial infection. We identified a core T signature that is distinct from CD4 T follicular regulatory and effector cells and identified pathogen-specific transcriptional modules that shape T function.

View Article and Find Full Text PDF

PD-L1 on ex-vivo Expanded Toll-like-receptor-Bregs Prevents Allograft Rejection by Breg Viability Promotion, CD4T Effector Cell Suppression, and Tregs Induction.

Am J Transplant

September 2025

Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania

Achieving immune tolerance is a key goal in organ transplantation, as it eliminates the need for long-term immunosuppression. Regulatory B cells (Bregs) present a promising strategy for inducing tolerance. Our previous findings demonstrate that the adoptive transfer of ex vivo-expanded murine splenic B regulatory cells, referred to as TLR-Bregs (TLR9/TLR4 stimulation), induces tolerance to allografts.

View Article and Find Full Text PDF

Defining breast epithelial cell types in the single-cell era.

Dev Cell

September 2025

Department of Pharmacology, University of Cambridge, Cambridge, UK; Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK. Electronic address:

Single-cell studies on breast tissue have contributed to a change in our understanding of breast epithelial diversity that has, in turn, precipitated a lack of consensus on breast cell types. The confusion surrounding this issue highlights a possible challenge for advancing breast atlas efforts. In this perspective, we present our consensus on the identities, properties, and naming conventions for breast epithelial cell types and propose goals for future atlas endeavors.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.

View Article and Find Full Text PDF

Molecular Mechanisms Underlying Parasitoid-Derived Host Manipulation Strategies.

Annu Rev Entomol

September 2025

2Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; email:

Parasitoid wasps are a diverse group of insects with a unique parasitic lifestyle that allows them to spend their lives closely interacting with their insect hosts, facilitated by parasitic effectors, including venom, polydnaviruses, and teratocytes. These effectors manipulate various aspects of insect host biology to increase the survival of the parasitoids' offspring. During the last two decades, omics and functional studies have significantly advanced our understanding of how parasitoids manipulate their hosts at the molecular level.

View Article and Find Full Text PDF