Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: This study aimed to optimize the coating process of Omega-3 fatty acid (OM3-FA) mini soft capsules containing the active pharmaceutical ingredients (APIs) pitavastatin and ezetimibe using near-infrared (NIR) spectroscopy for in-process monitoring. Cardiovascular disease treatments benefit from combining OM3-FA with lipid-lowering agents, but formulating such combinations in mini soft capsules presents challenges in maintaining stability and mechanical integrity.
Methods: The coating process was developed using a pan coater and real-time NIR monitoring to ensure uniformity and quality. NIR spectroscopy enabled precise control of coating thickness, ensuring consistent drug distribution across the capsule surface.
Results: The optimized process minimized OM3-FA oxidation and preserved the mechanical integrity of the capsules, as confirmed by texture analysis and in-vitro dissolution testing. This integration of NIR spectroscopy as a process analytical technology (PAT) significantly improved coating quality control, resulting in a stable and effective combination therapy for pitavastatin and ezetimibe in a mini soft capsule form.
Conclusion: This approach offers an efficient solution for enhancing patient adherence in cardiovascular disease management. The application of NIR spectroscopy for real-time monitoring highlights its broader significance in pharmaceutical manufacturing, where it can serve as a versatile tool for ensuring product quality and optimizing production efficiency in diverse formulation processes. By incorporating NIR-based PAT, manufacturers can not only achieve product-specific improvements but also establish a foundation for continuous manufacturing and automated quality assurance systems, ultimately contributing to a more streamlined and robust production environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597440 | PMC |
http://dx.doi.org/10.3390/pharmaceutics16111374 | DOI Listing |