Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Understanding the intricate dynamics of fish microbiota through 16S rRNA amplicon sequencing is pivotal for ecological insights and effective disease management. However, this approach faces challenges including the co-amplification of host mitochondrial sequences and the variability in bacterial composition influenced by the selected 16S rRNA gene regions. To overcome these limitations, we conducted a comprehensive investigation to identify the most suitable 16S rRNA region for bacterial microbial analysis in endangered fish , an endemic species of significant ecological and economic importance in Mexico. Targeting four distinct hypervariable regions (V1-V2, V2-V3, V3-V4, and V5-V7) of the 16S rRNA gene, we determined the microbial composition within the distal intestine. A total of 40 microbiomes were sequenced. Our findings underscore the critical impact of region selection on the accuracy of microbiota analysis. The V3-V4 region detected the highest number of bacterial taxa and exhibited significantly higher alpha diversity indices, demonstrating the highest taxonomic resolution. This study emphasizes the necessity of meticulous 16S rRNA region selection for fish microbiota analysis, particularly in native species of ecological and economic significance such as the endangered , where information is limited. Such optimization enhances the reliability and applicability of microbiota studies in fisheries management and conservation efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596169 | PMC |
http://dx.doi.org/10.3390/microorganisms12112119 | DOI Listing |