98%
921
2 minutes
20
Background: Autosomal recessive inherited pathogenetic variants in the histidine triad nucleotide-binding protein 1 () gene are responsible for an axonal Charcot-Marie-Tooth neuropathy associated with neuromyotonia, a phenomenon resulting from peripheral nerve hyperexcitability that causes a spontaneous muscle activity such as persistent muscle contraction, impaired relaxation and myokymias.
Methods: Herein, we describe two brothers in whom biallelic variants were identified following a multidisciplinary approach.
Results: The younger brother came to our attention for clinical evaluation of moderate intellectual disability, language developmental delay, and some behavioral issues. His elder brother presented mild intellectual disability, hyperactivity, tiptoe walking, and gait ataxia. At first evaluation, motor impairment with frequent falls, pes cavus, and distal hyposthenia with reduced osteotendinous reflexes were found in both. Grip myotonic phenomenon was also noted. Blood tests revealed mildly elevated creatine kinase, and neurophysiology investigations revealed predominantly axonal polyneuropathy. Muscle MRI highlighted fibro-adipose infiltration, prevalent in the lower limbs. Gene panel testing detected a heterozygous variant (c.355C>T/p.(Arg119Trp)) on the paternal allele. A further in-depth analysis using Integrative Genomics Viewer and Optical Genome Mapping led us to identify an additional variant in represented by a complex rearrangement located in the region 5'UTR-exon 1-intron 1, not previously described.
Conclusions: This complex rearrangement could have been overlooked if the clinical picture had not been evaluated as a whole (from a clinical, neurophysiological, and neuroimaging point of view). Neuropsychiatric manifestations (intellectual disability, hyperactivity, etc.) are part of the picture of -related neuromyotonia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593638 | PMC |
http://dx.doi.org/10.3390/genes15111483 | DOI Listing |
Nucleic Acids Res
September 2025
Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic.
RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.
View Article and Find Full Text PDFBiochemistry
September 2025
Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570020, India.
Chromosome organization and segregation are fundamental processes across all domains of life. In bacteria, the mechanisms governing nucleoid organization remain poorly understood. This study investigates the function of an alternative structural maintenance of chromosomes (SMC) complex, MksBEF, in .
View Article and Find Full Text PDFBiosystems
September 2025
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:
Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.
View Article and Find Full Text PDFExp Hematol
September 2025
Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan. Electronic address:
Gene rearrangements of the human MLL gene (also known as KMT2A) generate multiple fusion oncoproteins which cause leukemia with poor prognosis. MLL is an epigenetic regulator that reads and writes epigenetic information and has an evolutionarily conserved role maintaining expression of Homeotic (HOX) genes during embryonic development. Most MLL gene rearrangements found in leukemia generate a constitutively active version of the wild-type protein, which causes overexpression of HOX and other genes and leukemic transformation of normal hematopoietic progenitors.
View Article and Find Full Text PDFInorg Chem
September 2025
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China.
Precisely structured nanoclusters provide ideal platforms for elucidating structural evolution and structure-activity relationships. However, mechanistic understanding of dynamic core-shell rearrangements has long been impeded by the elusive nature of intermediates during transformation processes. Here, we show that ligand engineering-driven asymmetric thiolate exchange enables atomic-level visualization of structural evolution, thereby overcoming the long-standing challenge of intermediate capture.
View Article and Find Full Text PDF