98%
921
2 minutes
20
Phosphorus (P) loading from tile-drained agricultural lands is linked to water quality and aquatic ecosystem degradation. The RZWQM2-P model was developed to simulate the fate and transport of P in soil-water-plant systems, especially in tile-drained croplands. Comprehensive evaluation and application of RZWQM2-P, however, remains limited. This study evaluates RZWQM2-P in simulating P dynamics using extensive data and assesses the potential of management practices for mitigating P losses. Subsurface drainage and surface runoff flows were monitored at a tile-drained site from 2017 to 2020 in Ohio, and the water flow and P loss data were summarized on a daily basis. RZWQM2-P was calibrated and validated using those observed data and was subsequently used to assess the effectiveness of controlled drainage (CD) and winter cover crops (CC) in reducing P losses. The model satisfactorily simulated dissolved reactive P (DRP) loss from tile drainage on daily and monthly bases (Nash-Sutcliffe efficiency [NSE] = 0.50, R= 0.52, index of agreement [IoA] = 0.84 for daily; NSE = 0.73, R= 0.78, IoA = 0.94 for monthly) and total P (TP) loss on a monthly basis (NSE = 0.64, R= 0.65, IoA = 0.88), but the daily TP simulation was less accurate (NSE = 0.30, R= 0.30, IoA = 0.59). Simulations showed that winter rye CC reduced DRP by 16% and TP by 4% compared to the base scenario, whereas CD increased DRP (60%-129%) and TP (5%-17%) losses at three tested outlet elevations compared to free drainage. RZWQM2-P can capture P dynamics in tile-drained cropland and is a promising tool for effective P management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718149 | PMC |
http://dx.doi.org/10.1002/jeq2.20656 | DOI Listing |
J Environ Qual
January 2025
USDA-ARS, Soil Drainage Research Unit, Columbus, Ohio, USA.
Phosphorus (P) loading from tile-drained agricultural lands is linked to water quality and aquatic ecosystem degradation. The RZWQM2-P model was developed to simulate the fate and transport of P in soil-water-plant systems, especially in tile-drained croplands. Comprehensive evaluation and application of RZWQM2-P, however, remains limited.
View Article and Find Full Text PDF