Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chromosomal instability is a major driver of intratumoral heterogeneity (ITH), promoting tumor progression. In the present study, we combined structural variant discovery and nucleosome occupancy profiling with transcriptomic and immunophenotypic changes in single cells to study ITH in complex karyotype acute myeloid leukemia (CK-AML). We observed complex structural variant landscapes within individual cells of patients with CK-AML characterized by linear and circular breakage-fusion-bridge cycles and chromothripsis. We identified three clonal evolution patterns in diagnosis or salvage CK-AML (monoclonal, linear and branched polyclonal), with 75% harboring multiple subclones that frequently displayed ongoing karyotype remodeling. Using patient-derived xenografts, we demonstrated varied clonal evolution of leukemic stem cells (LSCs) and further dissected subclone-specific drug-response profiles to identify LSC-targeting therapies, including BCL-xL inhibition. In paired longitudinal patient samples, we further revealed genetic evolution and cell-type plasticity as mechanisms of disease progression. By dissecting dynamic genomic, phenotypic and functional complexity of CK-AML, our findings offer clinically relevant avenues for characterizing and targeting disease-driving LSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631769PMC
http://dx.doi.org/10.1038/s41588-024-01999-xDOI Listing

Publication Analysis

Top Keywords

clonal evolution
12
acute myeloid
8
myeloid leukemia
8
complex karyotype
8
structural variant
8
single-cell multiomics
4
multiomics analysis
4
analysis reveals
4
reveals dynamic
4
dynamic clonal
4

Similar Publications

Complex chromosomal changes in Acute Myeloid Leukemia (AML) are highly heterogeneous, with disease progression shaped by both the number and nature of abnormalities. Rarely do, multiple unrelated clones with independent chromosomal changes coexist at diagnosis. Present study showcases a comprehensive characterization of two cytogenetically distinct complex clones in AML, driven by non-cyclic and chromoplexy mechanisms, highlighting their co-existence with key molecular alterations (TP53, NF1, DNMT3A, TET2) along with their potential contribution to clonal evolution.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) are essential components of the innate immune system, functioning as pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In hematological malignancies, particularly myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML), TLRs influence inflammation, disease progression, and therapeutic response. This review highlights the prognostic relevance of TLR expression, the role of the MyD88 signaling pathway in clonal evolution, and the dual nature of TLR-mediated immune responses, either promoting antitumor activity or contributing to leukemogenesis.

View Article and Find Full Text PDF

Extrachromosomal DNA-Driven Oncogene Spatial Heterogeneity and Evolution in Glioblastoma.

Cancer Discov

September 2025

Evolutionary Dynamics Group, Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.

Unlabelled: Oncogenes amplified on extrachromosomal DNA (ecDNA) contribute to treatment resistance and poor survival across cancers. Currently, the spatiotemporal evolution of ecDNA remains poorly understood. In this study, we integrate computational modeling with samples from 94 treatment-naive human glioblastomas (GBM) to investigate the spatiotemporal evolution of ecDNA.

View Article and Find Full Text PDF

pv. is a pathogen of rice responsible for bacterial leaf streak, a disease that can cause up to 32% yield loss. While it was first reported a century ago in Asia, its first report in Africa was in the 1980s.

View Article and Find Full Text PDF

Hypoxia-inducible factor (HIF) is a master regulator of cancer cell adaptation to tumor hypoxia and is involved in cancer progression. Single-cell (sc) differences in the HIF response allow for tumor evolution and cause therapy resistance. These sc-differences are usually ascribed to tumor microenvironmental differences and/or clonal (epi)genetic variability.

View Article and Find Full Text PDF