Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Purpose: Radiomics has revolutionized clinical research by enabling objective measurements of imaging-derived biomarkers. However, the true potential of radiomics necessitates a comprehensive understanding of the biological basis of extracted features to serve as a clinical decision support. In this work, we propose an end-to-end framework for the in silico simulation of [F]FLT PET imaging process in Pancreatic Ductal Adenocarcinoma, accounting for the biological characterization of tissues (including perfusion and fibrosis) on tracer delivery. We thus establish a direct association between radiomics features and the underlying biological properties of tissues.
Methods: We considered 4 immunohistochemically stained Whole Slide Images of pancreatic tissue of one healthy control and three patients with PDAC and/or precursor lesions. From marker-specific images, tissue-depending diffusivity properties were estimated and computational domains were built to simulate the [F]FLT spatial-temporal uptake exploiting Partial Differential Equations and Finite Elements Method. Consequently, we simulated the imaging process obtaining surrogated PET images for the considered patients, and we performed image-derived features extraction from PET images to be mapped with biological properties via correlation estimation.
Results: The framework captured the phenotypic differences and generated Time Activity Curves reflecting the underlying tissue composition. Image-derived biomarkers were ranked in view of their association with biological characteristics of the tissue, unveiling their molecular correlative. Moreover, we showed that the proposed pipeline could serve as a digital phantom to optimize the image acquisition for lesion detection.
Conclusions: This innovative framework holds the potential to enhance interpretability and reliability of radiomics, fostering the adoption in personalized nuclear medicine and patient care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00259-024-06958-6 | DOI Listing |