Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Microbial pathogens have coevolved with their hosts, often for millions of years, and in the process have developed a variety of virulence mechanisms to ensure their survival, typically at the host's expense. At the center of this host-pathogen warfare are proteins called effectors that are delivered by bacteria into their host where they alter the intracellular environment to promote bacterial proliferation. Many effectors are believed to have been acquired by the bacteria from their host during evolution, explaining why researchers are keen to understand their function, as this information may provide insight into both microbial virulence strategies and biological processes that happen within our own cells. Help for accomplishing this goal has come from the recent development of increasingly powerful genetic approaches, which are the focus of this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-genet-111523-102030 | DOI Listing |