Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Up-converted photoluminescence excitation (UPLE) spectra of AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on Si substrates have been investigated. Based on the temperature dependence of UPLE, the 3.335-eV excitation peak is attributed to the two-dimensional electron gases (2DEGs) in the AlGaN/GaN heterostructure. A two-step two-photon absorption process through real intermediate quantum-well states is suggested to be responsible for the up-converted luminescence in the AlGaN/GaN HEMTs.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.533392DOI Listing

Publication Analysis

Top Keywords

two-dimensional electron
8
electron gases
8
algan/gan high-electron-mobility
8
high-electron-mobility transistors
8
up-converted photoluminescence
8
photoluminescence excitation
8
observations two-dimensional
4
algan/gan
4
gases algan/gan
4
transistors up-converted
4

Similar Publications

Molecular Plasmonic Cavities.

Nano Lett

September 2025

Department of Physics, Columbia University, New York, New York 10027, United States.

Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.

View Article and Find Full Text PDF

Polymorphic two-dimensional (2D) transition metal dichalcogenides (TMDCs) exhibit diverse properties for optoelectronic applications. Here, utilizing phase-engineered MoTe as a prototypical platform, we comprehensively explored its ultrafast and nonlinear optical properties to complete the fundamental framework of phase-dependent optical phenomena in 2D TMDCs. Starting with the phase-selective synthesis of 2H- and 1T'-MoTe with tailored thicknesses, we revealed their distinct photocarrier relaxation mechanisms using intensive power-/temperature-/thickness-dependent transient absorption spectra (TAS).

View Article and Find Full Text PDF

Substrate-modulated interfacial proton adsorption on graphene.

J Colloid Interface Sci

September 2025

State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; College of Aerospace Engineering, Nanjing University of Aerona

Ion adsorption at the solid-liquid interface of two-dimensional (2D) materials is ubiquitous and plays a pivotal role in interfacial physicochemical interactions. In practical applications, 2D materials are typically supported on solid substrates. Understanding the role of the supporting substrate is therefore critical for advancing our fundamental knowledge of interfacial interactions and downstream application success.

View Article and Find Full Text PDF

We show that the ground state of a weakly charged two-dimensional electron-hole fluid in a strong magnetic field is a broken translation symmetry state with interpenetrating lattices of localized vortices and antivortices in the electron-hole-pair field. The vortices and antivortices carry fractional charges of equal sign but unequal magnitude and have a honeycomb-lattice structure that contrasts with the triangular lattices of superconducting electron-electron-pair vortex lattices. We predict that increasing charge density or a weakening magnetic field drives a vortex delocalization transition that would be signaled experimentally by an abrupt increase in counterflow transport resistance.

View Article and Find Full Text PDF

We propose a scheme for retrieving the ultrafast valley polarization (VP) dynamics in two-dimensional hexagonal materials via attosecond circular dichroism (CD) transient absorption spectroscopy. This approach builds on the CD transition between the first and higher conduction bands induced by the circularly polarized probe pulses. The population imbalance at nonequivalent valleys in the first conduction band is proportionally mapped onto the difference in absorption coefficients of two probe pulses with opposite helicities, supporting an unprecedented quantitative retrieval of the corresponding VP dynamics with subfemtosecond time resolution.

View Article and Find Full Text PDF