Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
An anomalous Raman phenomenon (ARP) refers to a scenario in which the Stokes and anti-Stokes frequencies of a Raman mode are different. Here we report that ARP introduces different line shifts in Stokes and anti-Stokes frequencies in 4-Decyloxy Benzoic acid with temperature across two thermally driven structural transitions: the smectic (S) to nematic (N) phase transition at 375 K and the nematic (N) to isotropic (I) transition at 390 K. Four Raman modes near 663, 773, 1128, and 1168 cmshift towards higher frequencies (blueshift) in the Stokes frequency and towards lower frequencies (redshift) in the anti-Stokes frequency with rise in temperature near S to N phase transitions. However, in the isotropic liquid phase, both the Stokes and anti-Stokes components exhibit a redshift as temperature increases, without any noticeable distinct spectral lineshifts. Our studies bring out the importance of phonon band structure in ARP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ad95d4 | DOI Listing |