Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although rare neurodevelopmental conditions have a large Mendelian component, common genetic variants also contribute to risk. However, little is known about how this polygenic risk is distributed among patients with these conditions and their parents nor its interplay with rare variants. It is also unclear whether polygenic background affects risk directly through alleles transmitted from parents to children, or whether indirect genetic effects mediated through the family environment also play a role. Here we addressed these questions using genetic data from 11,573 patients with rare neurodevelopmental conditions, 9,128 of their parents and 26,869 controls. Common variants explained around 10% of variance in risk. Patients with a monogenic diagnosis had significantly less polygenic risk than those without, supporting a liability threshold model. A polygenic score for neurodevelopmental conditions showed only a direct genetic effect. By contrast, polygenic scores for educational attainment and cognitive performance showed no direct genetic effect, but the non-transmitted alleles in the parents were correlated with the child's risk, potentially due to indirect genetic effects and/or parental assortment for these traits. Indeed, as expected under parental assortment, we show that common variant predisposition for neurodevelopmental conditions is correlated with the rare variant component of risk. These findings indicate that future studies should investigate the possible role and nature of indirect genetic effects on rare neurodevelopmental conditions, and consider the contribution of common and rare variants simultaneously when studying cognition-related phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634775PMC
http://dx.doi.org/10.1038/s41586-024-08217-yDOI Listing

Publication Analysis

Top Keywords

neurodevelopmental conditions
24
rare neurodevelopmental
16
indirect genetic
12
genetic effects
12
common variants
8
polygenic risk
8
rare variants
8
direct genetic
8
parental assortment
8
rare
7

Similar Publications

Identification and prioritization of gene sets associated with schizophrenia risk by network analysis.

Psychopharmacology (Berl)

September 2025

Institute of Cardiovascular Research, Sleep Medical Center, Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.

Rationale: Genome-wide association studies (GWASs) are used to identify genetic variants for association with schizophrenia (SCZ) risk; however, each GWAS can only reveal a small fraction of this association.

Objectives: This study systematically analyzed multiple GWAS data sets to identify gene subnetwork and pathways associated with SCZ.

Methods: We identified gene subnetwork using dmGWAS program by combining SCZ GWASs and a human interaction network, performed gene-set analysis to test the association of gene subnetwork with clinical symptom scores and disease state, meanwhile, conducted spatiotemporal and tissue-specific expression patterns and cell-type-specific analysis of genes in the subnetwork.

View Article and Find Full Text PDF

Alteration in hippocampal mitochondria ultrastructure and cholesterol accumulation linked to mitochondrial dysfunction in the valproic acid rat model of autism spectrum disorders.

Psychopharmacology (Berl)

September 2025

Instituto de Biología Celular y Neurociencias "Prof. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.

Rationale: Autism spectrum disorders (ASD) are a group of neurodevelopmental and multifactorial conditions with cognitive manifestations. The valproic acid (VPA) rat model is a well-validated model that successfully reproduces the behavioral and neuroanatomical alterations of ASD. Previous studies found atypical brain connectivity and metabolic patterns in VPA animals: local glucose hypermetabolism in the prefrontal cortex, with no metabolic changes in the hippocampus.

View Article and Find Full Text PDF

Fragile X syndrome (FXS), a leading inherited cause of intellectual disability and autism, is frequently accompanied by sleep and circadian rhythm disturbances. In this study, we comprehensively characterized these disruptions and evaluated the therapeutic potential of a circadian-based intervention in the fragile X mental retardation 1 () knockout (KO) mouse. The KO mice exhibited fragmented sleep, impaired locomotor rhythmicity, and attenuated behavioral responses to light, linked to an abnormal retinal innervation and reduction of light-evoked neuronal activation in the suprachiasmatic nucleus.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental condition that is increasingly linked to immune dysfunction and neuroinflammation. Regulatory T cells (Tregs), which are crucial in maintaining immune homeostasis, have been implicated in the pathogenesis of ASD. However, their role in neuroimmune interactions and behavioral outcomes remains poorly understood.

View Article and Find Full Text PDF