Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Blue carbon cycling in mangrove ecosystems is proving to be more complex than previously thought. The objective of this study was the application of structural equation modelling (SEM) to capture such complex and varying data types and provide a holistic understanding of mangrove blue carbon cycling using data from the Indian Sundarban as a test case. We found that SEM was effective at integrating multiple data types and characterizing the processes and variables that regulate the nature and magnitude of CO fluxes within a mangrove ecosystem, including atmosphere-hydrosphere, atmosphere-pedosphere, and net ecosystem exchange. Overall, this study finds that atmospheric, water, and soil temperatures were the main and common drivers of CO effluxes towards the atmosphere from the entire ecosystem, waterbodies, and soils of mangrove ecosystems, respectively. We conclude that SEM is useful for combining data from different sources, gaining an overarching view of the complex biogeochemical cycling of the blue carbon ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2024.117290 | DOI Listing |