Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Refractory metal-based MXenes refer to MXenes with M as a refractory metal. Due to their high conductivity, large specific surface area, multiple active sites, high photothermal conversion efficiency, adjustable surface groups, and controllable nanolayer spacing, they hold broad application prospects in various fields such as photoelectrocatalysis, biomedicine, water treatment, electromagnetic shielding, and sensors. The unique physical properties of refractory metal-based MXenes are related to their electronic and crystal structures. The interstitial layer causes the carbides to exhibit different behavior compared to the original metal. At the same time, different preparation methods have a great influence on the interlayer spacing and surface termination of refractory metal-based MXenes, thus affecting their performance. This review systematically summarizes the latest progress in the preparation methods and frontier applications of refractory metal-based MXenes, offering new insights for further development. Additionally, various characterization techniques and first-principles calculations are summarized, which are crucial for optimizing refractory metal-based MXenes for applications such as catalysis, energy storage, and sensors. In summary, the current challenges and future development prospects of refractory metal-based Mxenes are addressed, aiming to provide indispensable information for the intelligent design of 2D materials in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202408331 | DOI Listing |