98%
921
2 minutes
20
Aims: Although evaluation of left ventricular ejection fraction (LVEF) is crucial for deciding the rate control strategy in patients with atrial fibrillation (AF), real-time assessment of LVEF is limited in outpatient settings. We aimed to investigate the performance of artificial intelligence-based algorithms in predicting LV systolic dysfunction (LVSD) in patients with AF and rapid ventricular response (RVR).
Methods And Results: This study is an external validation of a pre-existing deep learning algorithm based on residual neural network architecture. Data were obtained from a prospective cohort of AF with RVR at a single centre between 2018 and 2023. Primary outcome was the detection of LVSD, defined as a LVEF ≤ 40%, assessed using 12-lead electrocardiography (ECG). Secondary outcome involved predicting LVSD using 1-lead ECG (Lead I). Among 423 patients, 241 with available echocardiography data within 2 months were evaluated, of whom 54 (22.4%) were confirmed to have LVSD. Deep learning algorithm demonstrated fair performance in predicting LVSD [area under the curve (AUC) 0.78]. Negative predictive value for excluding LVSD was 0.88. Deep learning algorithm resulted competent performance in predicting LVSD compared with N-terminal prohormone of brain natriuretic peptide (AUC 0.78 vs. 0.70, = 0.12). Predictive performance of the deep learning algorithm was lower in Lead I (AUC 0.68); however, negative predictive value remained consistent (0.88).
Conclusion: Deep learning algorithm demonstrated competent performance in predicting LVSD in patients with AF and RVR. In outpatient setting, use of artificial intelligence-based algorithm may facilitate prediction of LVSD and earlier choice of drug, enabling better symptom control in AF patients with RVR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570393 | PMC |
http://dx.doi.org/10.1093/ehjdh/ztae062 | DOI Listing |
Hum Brain Mapp
September 2025
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.
Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2025
Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.
Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.
View Article and Find Full Text PDFEur J Case Rep Intern Med
August 2025
Internal Medicine, University of California, Riverside School of Medicine, Riverside, USA.
Introduction: Pulmonary embolism (PE) is a life-threatening condition with well-defined management strategies; however, the presence of a clot-in-transit (CIT)-a mobile thrombus within the right heart-introduces a uniquely high-risk scenario associated with a significantly elevated mortality rate. While several therapeutic approaches are available-including anticoagulation, systemic thrombolysis, surgical embolectomy, and catheter-directed therapies-there is no established consensus on a superior treatment modality. Catheter-based mechanical thrombectomy has emerged as a promising, minimally invasive alternative that mitigates the bleeding risks of systemic thrombolysis and the invasiveness of surgery.
View Article and Find Full Text PDFJ Clin Exp Hepatol
August 2025
Dept of Histopathology, PGIMER, Chandigarh, 160012, India.
Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.
View Article and Find Full Text PDFRadiol Adv
September 2024
Department of Radiology, Northwestern University and Northwestern Medicine, Chicago, IL, 60611, United States.
Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.
Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.