98%
921
2 minutes
20
Bacteria evolve mechanisms to compete for limited resources and survive in new niches. Here we study the mechanism of isethionate import from the sulfate-reducing bacterium Oleidesulfovibrio alaskensis. The catabolism of isethionate by Desulfovibrio species has been implicated in human disease, due to hydrogen sulfide production, and has potential for industrial applications. O. alaskensis employs a tripartite ATP-independent periplasmic (TRAP) transporter (OaIsePQM) to import isethionate, which relies on the substrate-binding protein (OaIseP) to scavenge isethionate and deliver it to the membrane transporter component (OaIseQM) for import into the cell. We determined the binding affinity of isethionate to OaIseP by isothermal titration calorimetry, KD = 0.95 µM (68% CI = 0.6-1.4 µM), which is weaker compared with other TRAP substrate-binding proteins. The X-ray crystal structures of OaIseP in the ligand-free and isethionate-bound forms were obtained and showed that in the presence of isethionate, OaIseP adopts a closed conformation whereby two domains of the protein fold over the substrate. We serendipitously discovered two crystal forms with sulfonate-containing buffers (HEPES and MES) bound in the isethionate-binding site. However, these do not evoke domain closure, presumably because of the larger ligand size. Together, our data elucidate the molecular details of how a TRAP substrate-binding protein binds a sulfonate-containing substrate, rather than a typical carboxylate-containing substrate. These results may inform future antibiotic development to target TRAP transporters and provide insights into protein engineering of TRAP transporter substrate-binding proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668362 | PMC |
http://dx.doi.org/10.1042/BCJ20240540 | DOI Listing |
Biochem J
August 2025
Department of Biology, University of York, Wentworth Way, York, YO10 5DD, U.K.
Pseudomonas aeruginosa PA01 is one of the major causes of disease persistence and mortality in patients with lung pathologies, relying on various host metabolites as carbon and energy sources for growth. The ict-ich-ccl operon (pa0878, pa0882 and pa0883) in PAO1 is required for growth on the host molecule itaconate, a C5-dicarboxylate. However, it is not known how itaconate is taken up into P.
View Article and Find Full Text PDFCommun Biol
August 2025
School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK.
Tripartite ATP-independent periplasmic (TRAP) transporters are widespread in prokaryotes, but absent in eukaryotes, and transport various substrates. TRAP transporters are typically composed of a monomeric substrate binding protein (SBP) and a characteristic transmembrane component. Here, we describe the discovery and characterisation of a TRAP SBP from the TAXI subfamily with a previously unidentified architecture.
View Article and Find Full Text PDFCommun Biol
November 2024
Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
The tripartite ATP-independent periplasmic (TRAP) transporters enable Vibrio cholerae and Haemophilus influenzae to acquire sialic acid, aiding their colonization of human hosts. This process depends on SiaP, a substrate-binding protein (SBP) that captures and delivers sialic acid to the transporter. We identified 11 nanobodies that bind specifically to the SiaP proteins from H.
View Article and Find Full Text PDFBiochem J
December 2024
Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand.
J Gen Physiol
December 2024
School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK.
Tripartite ATP-independent periplasmic (TRAP) transporters are widespread in prokaryotes and are responsible for the transport of a variety of different ligands, primarily organic acids. TRAP transporters can be divided into two subclasses; DctP-type and TAXI type, which share the same overall architecture and substrate-binding protein requirement. DctP-type transporters are very well studied and have been shown to transport a range of compounds including dicarboxylates, keto acids, and sugar acids.
View Article and Find Full Text PDF