98%
921
2 minutes
20
Bangladesh's burgeoning focus on power generation has prompted the government to implement ambitious plans to install power plants. Among these developments is the impending operation of a 2∗660 MW coal-power station in Patuakhali, which will operate at the end of the month in December 2024. The proposed technology addresses concerns about CO emissions from a plant, potentially causing health issues and threatening plant biodiversity, but may present challenges compared to other technologies. Monoethanolamine (MEA), eutectic, and potassium taurate are potential solvents for CO capture in coal power plants due to their power absorption rate, capacity, and resilience to oxidative as well as thermal degradation. However, the significant challenges include corrosiveness, solvent loss, and high energy demand. By contrast, advanced research includes fixed and capture level reduction operating modes for carbon dioxide removal in natural gas combined cycle power plants, which is appropriate for use in natural gas combined cycle (NGCC) power plants where further research is needed for coal-fired power plants. The current generation of CO removal equipment, such as electrostatic precipitators (ESP) and flue gas desulphurization units (FGD), can remove CO at 99 % and 80 %-99 %, respectively. These devices have several serious drawbacks, including high water consumption, high costs, complex waste management, and operational errors. Additionally, equipment must be modified to increase efficiency and maximize heat rate. Notably, the moisture content in coal must be reduced from 0.6 to 5.9 %, heat must be recycled from 1.2 to 3.6 %, the steam turbine loop must be improved from 2 to 4.5 %, and advanced controls and sensors must be replaced or used up to 1.5 times. Our study, utilizing an established operational model sanctioned within the country and assessment, revealed an approximate daily carbon emission of 4.806 million kilograms from the power plant. Employing the Sundarbans' sequestration rate, we calculated a carbon tolerance level of around 4.2 million kilograms daily for the plant area. This study also highlights the potential of computerized carbon capture and storage (CCCS) technology to significantly reduce emissions in the Sundarbans, which have nearly zero levels. It compares a computerized CCS model with an existing model, estimating over 90 % reduction considering 10 % mechanical faults. Implementing a computerized system can reduce CO leaks, risks, operational efficiency, costs, and policy compliance. It ensures the security of carbon capture, transportation, and storage processes, balancing environmental preservation and economic development. Advanced technologies can reduce emissions to zero, and the captured carbon can be used for petroleum-enhanced oil recovery techniques, which are briefly described. It also offers economic benefits and carbon credits, improving air quality and ocean health by mitigating pollutants and CO emissions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570483 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e37107 | DOI Listing |
Environ Monit Assess
September 2025
Department of Environment and Life Science, KSKV Kachchh University, Bhuj, Gujarat, 370 001, India.
India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.
View Article and Find Full Text PDFWaste Manag
September 2025
Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
As one of the major sources of greenhouse gas (GHG) emissions, the municipal solid waste (MSW) management system was regarded as a key contributor to the construction of a low-carbon society. Understanding the evolution of waste treatment facilities and the corresponding GHG emissions was essential for assessing the low-carbon competitiveness of local communities. In this study, facility-level data were used to estimate GHG emissions from the waste management system in the Yangtze River Delta (YRD) and analyze their temporal and spatial variations.
View Article and Find Full Text PDFSci Total Environ
September 2025
Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta" - Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
The outdoor storage of wood chips, used in biomass thermal power plants, may lead to different diffuse gaseous emissions. These emissions can contain different molecules, often with a non-negligible odour potential. Despite this need, these solid area sources are particularly complex to be characterised, due to their very high heterogeneity determined by a complex phenomenon of self-heating.
View Article and Find Full Text PDFSci Rep
September 2025
Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology (AIST), Fukushima, 9630298, Koriyama, Japan.
The increasing adoption of the Internet of Things (IoT) in energy systems has brought significant advancements but also heightened cyber security risks. Virtual Power Plants (VPPs), which aggregate distributed renewable energy resources into a single entity for participation in energy markets, are particularly vulnerable to cyber-attacks due to their reliance on modern information and communication technologies. Cyber-attacks targeting devices, networks, or specific goals can compromise system integrity.
View Article and Find Full Text PDFPLoS One
September 2025
School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia.
Coal blending in thermal power plants is a complex multi-objective challenge involving economic, operational and environmental considerations. This study presents a Q-learning-enhanced NSGA-II (QLNSGA-II) algorithm that integrates the adaptive policy optimization of Q-learning with the elitist selection of NSGA-II to dynamically adjust crossover and mutation rates based on real-time performance metrics. A physics-based objective function takes into account the thermodynamics of ash fusion and the kinetics of pollutant emission, ensuring compliance with combustion efficiency and NOx limits.
View Article and Find Full Text PDF