A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Engineering an Escherichia coli strain for enhanced production of flavonoids derived from pinocembrin. | LitMetric

Engineering an Escherichia coli strain for enhanced production of flavonoids derived from pinocembrin.

Microb Cell Fact

Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Flavonoids are a structurally diverse group of secondary metabolites, predominantly produced by plants, which include a range of compounds with pharmacological importance. Pinocembrin is a key branch point intermediate in the biosynthesis of a wide range of flavonoid subclasses. However, replicating the biosynthesis of these structurally diverse molecules in heterologous microbial cell factories has encountered challenges, in particular the modest pinocembrin titres achieved to date. In this study, we combined genome engineering and enzyme candidate screening to significantly enhance the production of pinocembrin and its derivatives, including chrysin, pinostrobin, pinobanksin, and galangin, in Escherichia coli.

Results: By implementing a combination of established strain engineering strategies aimed at enhancing the supply of the building blocks phenylalanine and malonyl-CoA, we constructed an E. coli chassis capable of accumulating 353 ± 19 mg/L pinocembrin from glycerol, without the need for precursor supplementation or the fatty acid biosynthesis inhibitor cerulenin. This chassis was subsequently employed for the production of chrysin, pinostrobin, pinobanksin, and galangin. Through an enzyme candidate screening process involving eight type-1 and five type-2 flavone synthases (FNS), we identified Petroselinum crispum FNSI as the top candidate, producing 82 ± 5 mg/L chrysin. Similarly, from a panel of five flavonoid 7-O-methyltransferases (7-OMT), we found pinocembrin 7-OMT from Eucalyptus nitida to yield 153 ± 10 mg/L pinostrobin. To produce pinobanksin, we screened seven enzyme candidates exhibiting flavanone 3-hydroxylase (F3H) or F3H/flavonol synthase (FLS) activity, with the bifunctional F3H/FLS enzyme from Glycine max being the top performer, achieving a pinobanksin titre of 12.6 ± 1.8 mg/L. Lastly, by utilising a combinatorial library of plasmids encoding G. max F3H and Citrus unshiu FLS, we obtained a maximum galangin titre of 18.2 ± 5.3 mg/L.

Conclusion: Through the integration of microbial chassis engineering and screening of enzyme candidates, we considerably increased the production levels of microbially synthesised pinocembrin, chrysin, pinostrobin, pinobanksin, and galangin. With the introduction of additional chassis modifications geared towards improving cofactor supply and regeneration, as well as alleviating potential toxic effects of intermediates and end products, we anticipate further enhancements in the yields of these pinocembrin derivatives, potentially enabling greater diversification in microbial hosts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575205PMC
http://dx.doi.org/10.1186/s12934-024-02582-zDOI Listing

Publication Analysis

Top Keywords

chrysin pinostrobin
12
pinostrobin pinobanksin
12
pinobanksin galangin
12
pinocembrin
8
structurally diverse
8
enzyme candidate
8
candidate screening
8
pinocembrin derivatives
8
enzyme candidates
8
enzyme
5

Similar Publications