Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Phenotypic heterogeneity presents challenges in providing clinical care to patients with pathogenic SCN8A variants, which underly a wide disease spectrum ranging from neurodevelopmental delays without seizures to a continuum of mild to severe developmental and epileptic encephalopathies (DEEs). An important unanswered question is whether there are clinically important subgroups within this wide spectrum. Using both supervised and unsupervised machine learning (ML) approaches, we previously found statistical support for two and three subgroups associated with loss- and gain- of- function vari-ants, respectively. Here, we test the hypothesis that the unsupervised subgroups (U1-U3) are distinguished by differential contributions of developmental and epileptic components.

Methods: We predicted that patients in the U1 and U2 subgroups would differ in timing of developmental delay and seizure onset, with earlier and concurrent onset of both features for the U3 subgroup. Standard statistical procedures were used to test these predictions, as well as to investigate clinically relevant associations among all five subgroups.

Results: Two-population proportion and Kruskal-Wallis tests supported the hypothesis of a reversed order of developmental delay and seizure onset for patients in U1 and U2, and nearly synchronous developmental delay/seizure onset for the U3 (termed DEE) subgroup. Association testing identified subgroup variation in treatment response, frequency of initial seizure type, and comorbidities, as well as different median ages of developmental delay onset for all five subgroups.

Significance: Unsupervised ML approaches discern differential developmental and epileptic components among patients with SCN8A-related epilepsy. Patients in U1 (termed developmental encephalopathy) typically gain seizure control yet rarely experience improvements in development, whereas those in U2 (termed epileptic encephalopathy) have fewer if any developmental impairments despite difficulty in achieving seizure control. This understanding improves prognosis and clinical management and provides a framework to discover mechanisms underlying variability in clinical outcome of patients with SCN8A-related disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.18118DOI Listing

Publication Analysis

Top Keywords

developmental epileptic
16
developmental delay
12
developmental
10
pathogenic scn8a
8
scn8a variants
8
epileptic components
8
patients scn8a-related
8
seizure control
8
patients
7
subgroups
5

Similar Publications

A clinical and genotype-phenotype analysis of MACF1 variants.

Am J Hum Genet

September 2025

Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands.

Microtubule-actin cross-linking factor 1 (MACF1) is a large protein of the spectraplakin family, which is essential for brain development. MACF1 interacts with microtubules through the growth arrest-specific 2 (Gas2)-related (GAR) domain. Heterozygous MACF1 missense variants affecting the zinc-binding residues in this domain result in a distinctive cortical and brain stem malformation.

View Article and Find Full Text PDF

Cortical versus hippocampal network dysfunction in a human brain assembloid model of epilepsy and intellectual disability.

Cell Rep

September 2025

Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Un

Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions using induced pluripotent stem cell (iPSC)-derived cortical- and hippocampal-ganglionic eminence assembloids to model developmental and epileptic encephalopathy 13, a condition arising from gain-of-function mutations in the SCN8A gene encoding the sodium channel Nav1.

View Article and Find Full Text PDF

Influence of executive functions on quality of life in Pediatric Epilepsy: A cross-sectional study.

Epilepsy Res

September 2025

Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstrasse 4, Munich 80337, Germany; Comprehensive Epilepsy Center, Ludwig-Maximilians-University, Munich, Germany. Electron

Background: The EpiTrack Junior is a screening tool assessing executive function in children with epilepsy. This study aimed to investigate whether children and adolescents with epilepsy are at a higher risk of experiencing a reduced quality of life if they also reveal abnormal results reflecting executive dysfunction.

Methods: We screened patients for executive dysfunction using the clinical test tool EpiTrack Junior.

View Article and Find Full Text PDF

Dravet syndrome (DS) is an early-onset epilepsy caused by loss of function mutations in the SCN1A gene, which encodes Nav1.1 channels that preferentially regulate activity of inhibitory neurons early in development. DS is associated with a high incidence of sudden unexpected death in epilepsy (SUDEP) by a mechanism that may involve respiratory failure.

View Article and Find Full Text PDF

Purpose: CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy. Greater understanding of the smallest meaningful improvements for individuals with CDD in clinical trials and practice is needed for a person-centred approach to treatment efficacy. This study explored how parent/caregivers of people with CDD understood meaningful improvements and described change for priority functional domains including communication, gross motor, fine motor, feeding.

View Article and Find Full Text PDF