98%
921
2 minutes
20
Unlabelled: The coral-dinoflagellate endosymbiosis is based on nutrient exchanges that impact holobiont energetics. Of particular concern is the breakdown or dysbiosis of this partnership that is seen in response to elevated temperatures, where loss of symbionts through coral bleaching can lead to starvation and mortality. Here we extend a dynamic bioenergetic model of coral symbioses to explore the mechanisms by which temperature impacts various processes in the symbiosis and to enable simulational analysis of thermal bleaching. Our model tests the effects of two distinct mechanisms for how increased temperature impacts the symbiosis: 1) accelerated metabolic rates due to thermodynamics and 2) damage to the photosynthetic machinery of the symbiont caused by heat stress. Model simulations show that the model can capture key biological responses to different levels of increased temperatures. Moderately increased temperatures increase metabolic rates and slightly decrease photosynthesis. The slightly decreased photosynthesis rates cause the host to receive less carbon and share more nitrogen with the symbiont. This results in temporarily increased symbiont growth and a higher symbiont/host ratio. In contrast, higher temperatures cause a breakdown of the symbiosis due to escalating feedback that involves further reduction in photosynthesis and insufficient energy supply for concentration by the host. This leads to the accumulation of excess light energy and the generation of reactive oxygen species, eventually triggering symbiont expulsion and coral bleaching. Importantly, bleaching does not result from accelerated metabolic rates alone; it only occurs as a result of the photodamage mechanism due to its effect on nutrient cycling. Both higher light intensities and higher levels of DIN render corals more susceptible to heat stress. Conversely, heterotrophic feeding can increase the maximal temperature that can be tolerated by the coral. Collectively these results show that a bioenergetics model can capture many observed patterns of heat stress in corals, such as higher metabolic rates and higher symbiont/host ratios at moderately increased temperatures and symbiont expulsion at strongly increased temperatures.
Supplementary Information: The online version contains supplementary material available at 10.1007/s00338-024-02561-1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561010 | PMC |
http://dx.doi.org/10.1007/s00338-024-02561-1 | DOI Listing |
Physiol Plant
September 2025
Centre of Molecular and Environmental Biology (CBMA), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal.
The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.
View Article and Find Full Text PDFMol Ecol
September 2025
Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
The class Hexacorallia, encompassing stony corals and sea anemones, plays a critical role in marine ecosystems. Coral bleaching, the disruption of the symbiosis between stony corals and zooxanthellate algae, is driven by seawater warming and further exacerbated by pathogenic microbes. However, how pathogens, especially viruses, contribute to accelerated bleaching remains poorly understood.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India.
Nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of salicylic acid (SA)- facilitated plant hormone signaling and plays a crucial role in plant defense through the activation of systemic acquired resistance (SAR). Although like genes are associated with stress responses in a variety of plant species, no thorough genome-wide investigation of these genes has been undertaken in pearl millet (). This study discovered seven -like genes on four pearl millet chromosomes (Chr1, Chr2, Chr4, and Chr6), which exhibit close affinity to NPRs from other plants and have common gene structures, conserved motifs, and domains.
View Article and Find Full Text PDFJ Reprod Dev
September 2025
Laboratory of Animal Science, College of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan.
Immature zebrafish oocytes are highly susceptible to high temperatures, making it difficult to warm cryopreserved oocytes rapidly. In the present study, we aimed to investigate whether thermosensitive channels, lipid mediators, and ferroptosis are involved in heat stress-induced injury in immature zebrafish oocytes. Oocytes were injected with inhibitors of a heat-sensitive channel (TRPV1) and multiple enzymes-cytosolic phospholipase Aα (cPLAα), cyclooxygenases (COXs), arachidonate lipoxygenase 5 (ALOX5), and lysophosphatidylcholine acyltransferase 2 (LPCAT2).
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China. Electronic add
Metarhizium acridum is a typical filamentous fungus that has been widely used to control grasshoppers, locusts, and crickets. Genetic engineering is a common strategy to enhance its virulence, conidiation, and stress tolerance. Here, we report that the M.
View Article and Find Full Text PDF