98%
921
2 minutes
20
3D cell cultures are widely used in biomedical research for the recapitulation of microenvironments. Viability assessment and monitoring of these intricate conformations remain an open problem as standard cell viability protocols based on colorimetry or microscopy are not directly applicable to intact 3D samples. Optical coherence tomography (OCT) has been explored extensively for subsurface structural and quasi-functional analysis of 3D cell cultures and tissue. Recent studies of dynamic OCT as a source of cellular contrast have found qualitative associations with necrosis in cell spheroids, suggesting potential as a viability marker. We present empirical and validated evidence for dynamic OCT as a quantitative indicator of cell viability in 3D cultures. We analysed over 240 MCF-7 cancer cell spheroids with dynamic OCT and corresponding viability measurements using the trypan blue exclusion assay. Significant effects of common reagents dimethyl sulfoxide (DMSO) and phosphate-buffered saline (PBS) on OCT readouts were noted. We proposed a regression-based OCT brightness normalisation technique that removed reagent-induced OCT intensity biases and helped improve correspondence to the viability assay. These results offer a quantitative biological foundation for further advances of dynamic OCT as a novel non-invasive modality for 3D culture monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563335 | PMC |
http://dx.doi.org/10.1364/BOE.533339 | DOI Listing |
Spine (Phila Pa 1976)
October 2025
Niigata Spine Surgery Center, Kameda Daiichi Hospital, Niigata, Japan.
Study Design: Prospective cohort study.
Objective: To investigate longitudinal changes in physical functional status after long corrective fusion in patients with adult spinal deformity (ASD) during 2 years of follow-up.
Background: In ASD surgery, reports assessing physical functional status in long-term observations for more than a year are lacking.
NMR Biomed
October 2025
Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
Understanding gastric physiology in rodents is critical for advancing preclinical neurogastroenterology research. However, existing techniques are often invasive, terminal, or limited in resolution. This study aims to develop a non-invasive, standardized MRI protocol capable of capturing whole-stomach dynamics in anesthetized rats with high spatiotemporal resolution.
View Article and Find Full Text PDFMed Eng Phys
October 2025
College of Basic Medical Science, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
Pulse diagnosis holds a pivotal role in traditional Chinese medicine (TCM) diagnostics, with pulse characteristics serving as one of the critical bases for its assessment. Accurate classification of these pulse pattern is paramount for the objectification of TCM. This study proposes an enhanced SMOTE approach to achieve data augmentation, followed by multi-domain feature extraction.
View Article and Find Full Text PDFMed Eng Phys
October 2025
Mechanical Engineering Department KVGIT Jaipur, Rajasthan, India.
Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.
View Article and Find Full Text PDFMed Eng Phys
October 2025
Department of Mechanical Engineering, University of Cape Town, 7701, South Africa; Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, 7701, South Africa.
The usability and versatility of autoinjectors in managing chronic and autoimmune diseases have made them increasingly attractive in medicine. However, investigations into autoinjector designs require an understanding of the kinematic properties and fluid behaviour during injection. To optimise injection efficiency, this study develops a mathematical and computational fluid dynamics (CFD) model of an IM autoinjector by investigating the effects of viscosity, needle length, needle diameter, and medication volume on the injection process.
View Article and Find Full Text PDF