Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Road construction significantly affects water resources by introducing contaminants, fragmenting habitats, and degrading water quality. This study examines the use of Remote Sensing (RS) data of Sentinel-1 (S1) and Senitnel-2 (S2) in Google Earth Engine (GEE) to do spatio-temporal analysis of turbidity in adjacent water bodies during the construction and operation of the E18 Arendal-Tvedestrand highway in southeastern Norway from 2017 to 2021. S1 radiometric data helped delineate water extents, while S2-Top of Atmosphere (TOA) multispectral data, corrected using the Modified Atmospheric correction for INland waters (MAIN), used to estimate turbidity levels. To ensure a comprehensive time series of RS data, we utilized S2-TOA data corrected with the MAIN algorithm rather than S2-Bottom Of Atmosphere (BOA) data. We validated the MAIN algorithm's accuracy against GLORIA (Global Observatory of Lake Responses to Interventions and Drivers) observations of surface water reflectance in lakes, globally. Subsequently, the corrected S2 data is used to calculate turbidity using the Novoa and Nechad retrieval algorithms and compared with GLORIA turbidity observations. Findings indicate that the MAIN algorithm adequately estimates water-leaving surface reflectance (Pearson correlation > 0.7 for wavelengths between 490 and 705 nm) and turbidity (Pearson correlation > 0.6 for both algorithms), determining Nechad as the more effective algorithm. In this regard, we used S2 corrected images with MIAN to estimate turbidity in the study area and evaluated with local gauge data and observational reports. Results indicate that the proposed framework effectively captures trends and patterns of turbidity variation in the study area. Findings verify that road construction can increase turbidity in adjacent water bodies and emphasis the employing RS data in cloud platforms like GEE can provide insights for effective long-term water quality management strategies during construction and operation phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177554 | DOI Listing |