An efficient discrete Chebyshev polynomials strategy for tempered time fractional nonlinear Schrödinger problems.

J Adv Res

Department of Computer Science and Mathematics, Lebanese American University, Beirut 13-5053, Lebanon. Electronic address:

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: An interesting type of fractional derivatives that has received widespread attention in recent years is the tempered fractional derivatives. These fractional derivatives are a generalization of the well-known fractional derivatives, such as Caputo and Riemann-Liouville. In fact, these derivatives are obtained by multiplying the expressed fractional derivatives by an exponential factor. These fractional derivatives have an additional parameter called λ such that in the case of λ=0, the classical Caputo or Riemann-Liouville fractional derivative is obtained.

Objectives: Employing the Caputo tempered fractional derivative to define time fractional nonlinear Schrödinger equation and a coupled system of nonlinear Schrödinger equations. Applying the orthonormal discrete Chebyshev polynomials (ODCPs) to solve these problems. For this purposes, the operational matrices of ordinary and tempered fractional derivatives of the ODCPs are obtained.

Methods: By representing the problem's solutions in terms of the ODCPs (with some unknown coefficients) and exploiting the expressed operational matrices, along with the collocation strategy, two systems of nonlinear algebraic equations are derived. By solving these systems, the expressed coefficients, and subsequently the solution of the main fractional problems are obtained.

Results: Some numerical examples are investigated to acknowledge the high accuracy of the designed approaches.

Conclusion: The tempered fractional derivative in the Caputo form is utilized to define the time fractional nonlinear Schrödinger equation and a coupled system of nonlinear Schrödinger equations. The ODCPs are used to design a numerical strategy for these problems. To this purpose, some operational matrices for these polynomials are obtained. In the designed procedures, the problem's solution are obtained by solving an algebraic system of equations. These systems are obtained by approximating the solution with the ODCPs and employing the expressed matrix relationships, along with the collocation technique. Some examples are presented to check the validity of the developed algorithms. The reported results acknowledged the high accuracy of the designed schemes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jare.2024.11.014DOI Listing

Publication Analysis

Top Keywords

fractional derivatives
28
nonlinear schrödinger
20
tempered fractional
16
fractional
14
time fractional
12
fractional nonlinear
12
fractional derivative
12
operational matrices
12
discrete chebyshev
8
chebyshev polynomials
8

Similar Publications

Validation of angiography-based FFR in non-culprit vessels of patients presenting with STEMI.

Clin Res Cardiol

September 2025

Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Room Rg-628, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands.

Background: Fractional flow reserve (FFR) for non-culprit lesions (NCLs) in patients with ST-elevation myocardial infarction (STEMI) can be influenced by temporary changes in microvascular resistance. Angiography-derived vessel fractional flow reserve (vFFR) has been tested as a less-invasive alternative.

Aims: The FAST STEMI II study aimed to assess the diagnostic performance of acute-setting vFFR vs.

View Article and Find Full Text PDF

Background: Invasive coronary physiology including fractional flow reserve (FFR), instantaneous wave-free ratio (iFR), and coronary flow reserve (CFR) are guideline-endorsed tools to guide the management of coronary artery disease (CAD). Complex factors impact and confound these assessments, and discordance between modalities complicates clinical management. iEquate is a prospective observational trial that combines multi-modality coronary physiology and optical coherence tomography (OCT) to identify the determinants of pressure-wire derived myocardial ischemia and iFR-FFR discordance.

View Article and Find Full Text PDF

Introduction: Absence of language development is a condition encountered across a large range of neurodevelopmental disorders, including a significant proportion of children with autism spectrum disorder. The neurobiological underpinnings of non-verbal ASD (nvASD) remain poorly understood.

Methods: This study employed multimodal MRI to investigate white matter (WM) microstructural abnormalities in nvASD, focusing on language-related pathways.

View Article and Find Full Text PDF

Thorough Physiological Assessment in Non-Culprit Vessels of Patients with Acute Myocardial Infarction: Is It a Required Action?

Cardiovasc Drugs Ther

September 2025

Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China.

Backgrounds: The management of non-culprit vessels (NCV) among individuals with acute myocardial infarction (AMI) remains an unsolved problem. Angiography-derived physiological assessments developed recently may help address this issue. Our study aims to measure angiography-derived fractional flow reserve (Angio-FFR) and angiography-derived index of microcirculatory resistance (Angio-IMR) in NCVs of AMI patients and explore their prognostic values and necessity.

View Article and Find Full Text PDF

Background: Energy-based devices are commonly used to improve the appearance of aging skin. Treatments can involve long recovery times, marked by pain, erythema, edema, and purpura, which is often a limiting factor in a patient’s willingness to undergo a procedure.

Objective: This study evaluated the safety and effectiveness of an Angiopoietin-1 derived QHREDGS peptide (Q-peptide) hydrogel and ointment, in comparison to a peptide-free control, in enhancing healing and patient satisfaction after radiofrequency microneedling (RFMN) treatment.

View Article and Find Full Text PDF