A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

High throughput screen identifies lysosomal acid phosphatase 2 (ACP2) to regulate IFN-1 responses to potentiate oncolytic VSV∆51 activity. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Strategies in genetic and pharmacological modulation of innate immunity to enhance oncolytic virotherapy (OV) efficacy are being explored. We have recently characterized the ability for vanadium-based compounds, a class of pan-phosphatase (PP) inhibitors, to potentiate OVs. We next sought to identify PPs that could be targeted to enhance OVs, akin to vanadium. By conducting a high-throughput screen of a library of silencing RNA (siRNA) targeting human PPs, we uncovered several PPs that robustly enhanced infectivity and oncolysis of the oncolytic vesicular stomatitis virus (VSV∆51). Knockdown of our top validated hit, lysosomal acid phosphatase 2 (ACP2), increased VSV∆51 viral titers by over 20-fold. In silico analysis by RNA sequencing revealed ACP2 to regulate antiviral type I interferon (IFN-1) signaling pathways, similar to vanadium. To further exploit this mechanism for therapeutic gain, we encoded a short-hairpin RNA (shRNA) against ACP2 into oncolytic vesicular stomatitis virus (VSV∆51) under a miR-30 promoter. This bioengineered OV demonstrated expression of the miR-30 promoter, knockdown of ACP2, repression and ultimately, showed markedly enhanced viral VSV∆51 particle production compared to its non-targeting control counterpart. Altogether, this study identifies IFN-1 regulating PP targets, namely ACP2, that may prove instrumental in increasing the therapeutic efficacy of OVs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569208PMC
http://dx.doi.org/10.1038/s41598-024-76855-3DOI Listing

Publication Analysis

Top Keywords

lysosomal acid
8
acid phosphatase
8
phosphatase acp2
8
acp2 regulate
8
oncolytic vesicular
8
vesicular stomatitis
8
stomatitis virus
8
virus vsv∆51
8
mir-30 promoter
8
acp2
6

Similar Publications