Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Mucoepidermoid Carcinoma (MEC) is a common salivary malignant neoplasm. Approximately 60 % of MECs harbor translocations between CRTC1 or CRTC3 and MAML2, which are thought to drive disease pathogenesis. However, the precise structural mechanism driving this rearrangement remains uncharacterized. Here, we performed multi-omic and long read genomic sequencing, discovering a chain of alterations that created the CRTC1::MAML2 fusion, but also an unexpected MAML2 to MYBL1 rearrangement, suggesting that MYBL1 may play a larger role in salivary gland cancers than previously recognized. Furthermore, we discovered and validated recurrent TERT rearrangements and amplifications in MEC models. 5/5 MEC cell lines and 36/39 (92 %) primary MEC tumors harbored a TERT rearrangement or copy number amplification. Custom sequencing of the TERT locus confirmed translocation breakpoints in 13/33 (39 %) MECs, while exome sequencing confirmed frequent TERT amplifications. Critically, TERT knockdown in NCI-H292, a cell line with TERT promoter rearrangement, reduced clonogenic cell survival, supporting a critical role of this gene in MEC tumorigenesis. Overall, our data suggest that complex chromothripsis rearrangement mechanisms drive the formation of structural variation in CRTC1::MAML2 fusion positive and negative tumors and reveal highly recurrent structural variation driving TERT rearrangement in MEC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983472 | PMC |
http://dx.doi.org/10.1016/j.oraloncology.2024.107108 | DOI Listing |