98%
921
2 minutes
20
Stretchable photosensors, which operate in the wavelength window of 1.3 μm, were fabricated with InN nanowires (NWs) and graphene to serve as a light-absorbing medium and carrier channel, respectively. Specifically, the stretchable photosensors were fabricated by transferring InN NWs embedded in graphene layers onto polyurethane substrates pre-stretched at the strain levels of 10, 20, 30, 40, 50, and 60%. An InN-NW photosensor fabricated at the pre-strain level of 50% and stretched at the strain of 50% produces a photocurrent of 0.144 mA, which corresponds to 76.2% of that (0.189 mA) measured in the released state. The photocurrent and photoresponsivity of the photosensor measured after 1000 cyclic-stretching tests are comparable to those measured before stretching. The performance of the stretchable photosensors was largely unaffected by parameters such as the relative humidity and duration of operation (up to 30 days), indicating that the devices operate very stably.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr03257h | DOI Listing |
Nanoscale
December 2024
Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of Korea.
Stretchable photosensors, which operate in the wavelength window of 1.3 μm, were fabricated with InN nanowires (NWs) and graphene to serve as a light-absorbing medium and carrier channel, respectively. Specifically, the stretchable photosensors were fabricated by transferring InN NWs embedded in graphene layers onto polyurethane substrates pre-stretched at the strain levels of 10, 20, 30, 40, 50, and 60%.
View Article and Find Full Text PDFSci Adv
May 2022
Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
Chemical monitoring communicates diverse environmental information from industrial and biological processes. However, promising and sustainable systems and associated inspection devices that dynamically enable on-site quality monitoring of target chemicals confined inside transformable and opaque channels are yet to be investigated. This paper designs stretchable photo-sensor patch sheets for nonsampling, source-free, and label-free on-site dynamic chemical monitoring of liquids flowing inside soft tubes via simple deformable surface wrapping.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2021
Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea.
To effectively implement wearable systems, their constituent components should be made stretchable. We successfully fabricated highly efficient stretchable photosensors made of inorganic GaN nanowires (NWs) as light-absorbing media and graphene as a carrier channel on polyurethane substrates using the pre-strain method. When a GaN-NW photosensor was stretched at a strain level of 50%, the photocurrent was measured to be 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2020
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
Due to their high in-plane stiffness and low flexural rigidity, two-dimensional (2D) materials are excellent candidates for engineering three-dimensional (3D) nanostructures using crumpling. An important new direction is to integrate 2D materials into crumpled heterostructures, which can have much more complex device geometries. Here, we demonstrate phototransistors from crumpled 2D heterostructures formed from graphene contacts to a monolayer transition-metal dichalcogenide (MoS, WSe) channel and quantify the membrane morphology and optoelectronic performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2019
Advanced Research Centre for Green Materials Science and Technology , National Taiwan University, Taipei , Taiwan.
Two-dimensional (2D) material nanocomposites have emerged as a material system for discovering new physical phenomena and developing novel devices. However, because of the low density of states of most two-dimensional materials such as graphene, the heterostructure of nanocomposites suffers from an enhanced depletion region, which can greatly reduce the efficiency of the charge carrier transfer and deteriorate the device performance. To circumvent this difficulty, here we propose an alternative approach by inserting a second 2D mediator with a heavy effective mass having a large density of states in-between the heterojunction of 2D nanocomposites.
View Article and Find Full Text PDF